
MODELING OF ROBOT LEARNING IN
MATLAB/SIMULINK ENVIRONMENT

Bojan Nemec, Leon Žlajpah

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

bojan.nemec@ijs.si(Bojan Nemec)

Abstract

The paper describes our environment for off-line programming and control design
of robot systems developed in Matlab/Simulink environment. A special empha-
sis has been given on robot learning. Nowadays, it is commonly accepted that
preprogrammed robots are applicable only in highly structured environments. In
order to bring robotic technology in every-days life as well to be used for small
batches of unstructured production, it is required that robots poses certain level
of self-adaptation. One of the important aspect of the self adaptation is unsuper-
vised learning, which imitates a learning processes of animals and human beings.
Learning is a long process, based on many successful or unsuccessful repetitions
of a given task. For that a judgment on how successful was the previous attempt
is crucial. Usually, learning assures a convergence to the globally optimal solu-
tion. Since successful learning depends on many parameters, like given rewards,
learning speed, noise rejection, etc. the simulation becomes an essential tool for
designing and tuning the learning algorithms. In the paper, we describe our sim-
ulation models for learning the ball-in-a-cup game, which is often used as a test
bed for various learning algorithms.

Keywords: robot simulation, robot learning, robot programming.

Presenting Author’s Biography
Nemec Bojan is senior research associate at Dept. of Automatics, Biocy-
bernetics and Robotics, Jozef Stefan Institute. He received BS, MSc and
PhD degree from the Univerity of Ljubljana in 1979, 1982 and 1988 re-
spectively. In 1993 he spent his sabbatical leave at the Institute for Real-
Time Computer Systems and Robotics, University of Karlsruhe. His re-
search interests include robot control, robot simulation, sensor guided con-
trol, service robots and biomechanical measurements in sport. Between
2002 and 2005 he was a task leader in the largest NAS European project
EUROShoE. He has published over 100 conference and journal papers and
is author of 1 patent, and co-author of a book.



1 Introduction
Nowadays, the system designer can relay on a variety
of different software tools which can significantly in-
crease his efficiency. Among them, the simulation has
been recognized as an important tool in designing new
products, investigating their performances and also in
developing applications of these products. For complex
systems such as robots the simulation tools can cer-
tainly enhance the design, development, and even the
operation of the robotic systems. Augmenting the sim-
ulation with visualization tools and interfaces, one can
simulate the operation of the robotic systems in a very
realistic way.

The simulation tools for robotic systems can be divided
into two major groups: tools based on general simula-
tion systems and special tools for robot systems. Tools
based on general simulation systems are usually spe-
cial modules, libraries or user interfaces which simplify
the building of robot systems and environments within
these general simulation systems. Special simulation
tools for robots cover one or more tasks in robotics like
off-line programming, design of robot work cells, kine-
matic and dynamic analysis, mechanical design. They
can be specialized for special types of robots like mo-
bile robots, underwater robots, parallel mechanisms, or
they are assigned to predefined robot family. Depend-
ing on the particular application different structural at-
tributes and functional parameters have to be modeled.
The majority of the robot simulation tools focus on the
motion of the robotic manipulator in different environ-
ments and among them an important group are the tools
for the design of robot control systems.

Currently, many different simulation tools are available,
which could be used in research and teaching labora-
tories. However, these tools are not always fulfilling
all the requirements of the research and teaching ac-
tivities in robotic laboratories. Reconfigurability and
openness are features already recognized by many as
essential in the development of advanced robot control
algorithms. Not only is it important to have easy access
to the system at all levels (e.g. from high-level supervi-
sory control all the way down to fast servo loops at the
lowest level), but it is a necessity to have open control
architectures where software modules can be modified
and exteroceptive sensors like force/torque sensors and
vision systems can be easily integrated. Reconfigura-
bility should also be reflected when more fundamental
changes to the controller architecture are required, in
the necessity of quickly being able to make modifica-
tions in the original design and verify the effect of these
modifications on the system. In other words, the user
should be able to quickly modify the structure of the
control without having to alter the simulation system
itself.

One of the widely used general simulation platforms
for the modeling and simulation of various kind of sys-
tems MATLAB. Developed by MathWorks, MATLAB
allows matrix manipulations, plotting of functions and
data, implementation of algorithms, creation of user
interfaces, symbolic computation and interfacing with

programs written in other languages. A number of ad-
ditional toolboxes efficiently solves problems regard-
ing technical computing, embedded systems, control
systems, digital signal processing, communication sys-
tems, image and video processing, mechatronics, com-
putational biology, computational finance and others.
Therefore, it is not surprising that it has been used inten-
sively for the simulation of robot systems. One of such
tools, The Robotics Toolbox [1], provides many func-
tions that are required in robotics and addresses areas
such as kinematics, dynamics, and trajectory genera-
tion. The Toolbox is useful for simulation as well as for
analyzing the results from experiments with real robots,
and can be a powerful tool for education. However,
it is not integrated into Simulink environment and not
appropriate for and for the hardware-in-the-loop sim-
ulation. However, it is not very good for the simula-
tion in Simulink and for the hardware-in-the-loop sim-
ulation “SimMechanics Toolbox” [2] extends Simulink
with the tools for modeling and simulating mechani-
cal systems. With SimMechanics, one can model and
simulate mechanical systems with a suite of tools to
specify bodies and their mass properties, their possible
motions, kinematic constraints, and coordinate systems
and to initiate and measure body motions.

In the paper, we present our MATLAB/Simulink based
simulation environment, dedicated to effective design
of high an low level control algorithms, sensory interac-
tion and testing of the hardware in the loop. One of the
major benefits of the proposed approach is, that allows
to include the real hardware at any point of the sim-
ulation loop. Therefore, is is possible to switch from
the simulation to the real hardware experiment with-
out any modification of the program code. This is ex-
tremely important when testing new control algorithms
and strategies for solving complex tasks, usually related
to service and humanoid robotics. These tasks usually
require that robots poses learning capabilities and cer-
tain level of self-adaptation. Nowadays robot learning
has been intensively investigated as a promising way
to execute complex tasks arising from the needs of hu-
manoids and service robotics. In the past, a number of
algorithms for the robot learning were proposed, start-
ing from the supervised learning based on neural net-
works, support vector machines, to the unsupervised
learning based on reinforcement learning, genetic al-
gorithms, etc.. Common to all these approaches is that
they require relatively large number of repetitions in or-
der to learn the required skill. Especially when devel-
oping new algorithms or just when tuning the learning
parameters, this becomes very time consuming and te-
dious procedure especially if executed on the real sys-
tem. Therefore, the simulation is used for learning as
a rule. However, if we want to use skills learned on
simulation also for the target system we need precise
models. Our approach is presented through an example
of learning a robot to play the ball-in-a-cup game, also
known as the “kendama” game. The aim of this game is
to swing the ball hanging from a cup down on a string
and to catch it with the cup.



2 Simulation environment
In the last years, the scope of our research has been
oriented more in the development of control systems
for humanoid and service robots. These robots have
in general a complex mechanical structure with many
degrees-of-freedom. Consequently, complex kinematic
and dynamic models are necessary to simulate them ad-
equately. Furthermore, the control methods and algo-
rithms we are developing are usually a part of the higher
robot control levels and it is assumed that the low level
close-loop control algorithms are a solved issue. These
high level control algorithms can become very complex
and may even require parallel computation distributed
over more computers.

Therefore, we had to reconsider the concept of the con-
trol design environment we will use in future. We have
augmented our simulation environment with compo-
nents that

• simulate the kinematics and dynamics of an arbi-
trary chosen kinematic chain describing different
manipulators
• enable integration of different sensor systems like

vision and force sensors
• enable simulation of scenarios for complex robot

tasks
• model the robots’ environments
• visualize the robots and their environment
• enable integration of real robots in the simulation

loop

Based on our good experience with MAT-
LAB/Simulink we have decided that MAT-
LAB/Simulink will be the kernel of our simulation
tools. However, some of the above requirements can be
easier fulfilled by using other tools. For example, the
visualization of the robot and the environment can be
easily done by dedicated graphics tools. Furthermore,
advanced robot control strategies rely intensively on
feedback sensor information. The very complex sensor
system is the vision system, which can have several
configurations and can be implemented on a single
computer or on a computer cluster composed of many
computers running different operating systems. To
integrate such a diversity of hardware components in an
unique framework we have decided to use the ethernet
communication and the UDP protocol. In this way, we
have a maximal possible ”degree-of-openness” of the
system. In our environment, each block can represent
a real system or a model of that system. Note that
because we are using ethernet communication between
the blocks, different software tools on different plat-
forms can be used to simulate specific parts of the
system. Consequently, the simulation environment
can consist of several interacting applications, each
representing a part of the system.

In Simulink, a system is modeled by combining input-
output blocks. To gain the transparency we try to rep-
resent a system by the block structure with several hier-
archical levels, i.e. by combining different basic blocks

subsystems are built which become a single block at the
higher level. Figure 1 shows the Robot systems block li-
brary. The goal of the library is to provide blocks which
are needed to simulate robotic systems and can not be
modeled with standard blocks. First of all, this are the
blocks for robot kinematic and dynamic models, the
blocks for sensors systems, the typical transformations
present in robot systems and the special interface blocks
for robots, sensors and all other communications. Addi-
tionally, the library includes some blocks with standard
subsystems like task space controllers, trajectory gen-
eration modules, etc.

3 Modeling of the ball-in-a-cup game
When learning different tasks different models are
needed. Unlike when learning a tennis swing, where
a human needs just to learn the goal function for the
very moment when the racket hits the ball, the Ball-in-
a-Cup task where the ball and the cup constantly inter-
act relies on the complete dynamics of the cup and the
ball. In order to build a simulation model, we first need
an accurate dynamic model of both parts. The part, i.e.
the subsystems of the ball-in-a-cup game, were mod-
eled using the Open Dynamics Engine (ODE) package
[3]. With ODE, we can successfully simulate the in-
teraction (collisions) between the ball and a cup, both
modeled as rigid bodies. Unfortunately, ODE has no
capability of simulation the ball on a rope. Therefore,
we had to build a special model for this purpose. Let us
briefly present the dynamic model of the ball-on-a rope
system.

Ball on a rope acts as a pendulum as long as the rope
is not loose and as a free flying object otherwise. Both
models are well known, but the problem is the switch-
ing between both models. It turns out, that is more ap-
propriate and accurate to model the ball as a free flying
object with external forces acting on it. External forces
are air drag forces and the forces resulting from the rope
tension. The overall dynamical model can be described
by the set of equations

mz̈ = fr + fa (1)

fr =

{
(Ksd+Kdḋ)h, d > 0

0, d ≤ 0

fa = Każ

d = (l − l0),

where z is the vector of the ball position, l is actual rope
length, l0 is the length of the untended rope, h is the unit
vector describing the tent rope direction, Ka is the air
drag constant and Ks and Kd are the rope stiffens and
rope damping respectively.

Since the ball-in-a-rope game is very sensitive to the ex-
act trajectory guidance over the entire game phase, we
need an accurate dynamic model of the robot. The robot
could also be modeled using ODE, but it turns out that
the simulation model is far more accurate, numerically
stable and efficient if modeled explicitly. The dynamics
of the n degrees of freedom articulated robot arm can



(c) 2008 IJS
Institut Jozef Stefan 

Slovenia
Robot system library 1.0

Transformations

Transformations

Task Generation

Task
Definition

Special devices

Special Devices
Environment

Sensors

Sensor
Systems

Rotations

Rotations

Quaternion operations

Quaternion
operations

Nomad

Nomad
XR 4000

Mitsubishi PA 10

Mitsubishi PA 10
Robot

Head

Humanoid Robot
Head

HOAP 3

Fujitsu HOAP 3
Robot

Controllers

Robot
Controllers

Animation

Roboworks
Animation

Fig. 1 Simulink Robot systems library

be presented with the well know equation

q̈ =H−1(τ −Cq − ξ − g − JTF ), (2)

where q is n dimensional vector of joint angles, τ is n
dimensional vector of joint torques,H is an n×n sym-
metric, positive definite inertia matrix , C is n× n ma-
trix of nonlinear terms due to the centrifugal and Cori-
olis forces, ξ is n dimensional vector of friction forces,
g is n dimensional vector of gravitational forces, J is
n×m dimensional Jacobian matrix,m is the number of
the task coordinates and F is an m dimensional vector
of environment contact force acting on the end-effector.
Nowadays the calculation of matrices H , C and vec-
tor g is becoming easy thanks to a number of dedi-
cated program packages for efficient dynamics calcula-
tion such as SD-Fast [4], Modelica [5], Newton [6], etc.
Many of them return not only the efficient mathematical
model, but also the program code. On contrary, a cor-
rect friction model remains still a problem. Namely, the
friction differs from the robot to robot of the same type
and also changes with the time. Therefore, the friction
should be estimated and compensated with an appropri-
ate algorithm. In our lab we have developed a friction
estimation and compensation algorithm based on two
layer neural network [7].

An important feature of the simulation is also the vi-
sualization. It is very important to visualize the sim-
ulation results. Especially in robotics it is necessary
to “see” the motion of the robot and objects in the
working environment. In our system we relay on ex-
ternal software for the visualization and animation of
robots. In general, joint angles of robotic manipula-
tors as well as the position and orientation of the other
simulated objects in the scene are passed to the visual-
ization tools using TCP/IP or UDP protocol. Currently,
we have integrated into our simulation environment two
visualization software packages - RoboWorks [8] and
Blender[9]. Roboworks incorporates simple, but effi-
cient modeler. Because of its simplicity RoboWorks
package is the favorable tool for the visualization of
simpler systems, i.e. one or two robots in non-complex
environment. Figure 2 shows Roboworks model of the
robot arm Mitsubishi Pa10 mounted on mobile platform
Nomad XR4000 during the simulation of the ball-in-a-
cup game. For more complex scenes we use Blender,
an open source multi-platform 3D computer animation

program, which has a lot of features that are potentially
interesting for engineering purposes, such as the simu-
lation and programming of robots, machine tools, hu-
mans and animals, etc. and the visualization and post-
processing of all sorts of data that come out of such
biological or artificial devices. Blender supports also
scripts (via Python interfaces to the core C/C++ code)
and has the capability of placing moving cameras at any
link of the kinematic chain, it supports the real time
photo realistic rendering for the virtual reality simula-
tion and has also a physics engine for the simulation of
the interactions between entities.

Fig. 2 Roboworks model of the ball-in-a-cup game

One of the key issues in the ball-in-a-cup game is also
the prediction of the catching pose. The prediction is
based on the estimation of the ball trajectory. Based
on the dynamic model of the free-flying object, we can
compute the ball trajectory using past observations and
applying appropriate regression algorithm. A straight-
forward way would be to simply use the data from the
ball-on-a-rope simulation block, but this violates our
concept of transparency and interchangeability of the
simulation blocks and the real-hardware blocks. There-
fore, we have developed a special module for the cam-



era simulation. It captures images directly form the
computer screen and is thus independent from the vi-
sual representation block. It acts as a virtual camera. In
this block, we can simulate also different lighting con-
ditions. Appropriate image processing algorithms from
our library are then used in order to retrieve the required
information from the real or virtual camera.

In order to define the initial trajectory for the swing-up
phase of the ball-in-a-cup game, we need the simula-
tion of the kinesthetic guidance. The simulation of the
kinesthetic guidance is provided by using the haptic de-
vice, which controls the position and the velocity of the
virtual hand holding the ball-on-a-rope system and de-
livers back the resulting forces. In this way it mimics
the real kinesthetic feeling of playing a real ball-on-a-
rope game. The figure 3 displays the simulation setup
of the ball-in-a-rope game.

Fig. 3 Simulation of the kinesthetic guidance of the
ball-in-a-cup game

4 Simulation of the supervised learning

Generally, supervised learning is a machine learning
technique for deducing trajectories from a set of train-
ing data. In robotics, this kind of learning is often re-
ferred as learning by imitation. The imitation involves
the interaction of perception, memory, and motor con-
trol. A straightforward approach is to mimic the human
motion by recording a sequence of movements and to
reproduce the same motion with the robot. In general,
this approach fails due to different dynamics capabili-
ties of the robot and humans. Therefore, the trajectory
to be executed by the robot has to be modified appro-
priately. A central issue in the trajectory generation and
modification is the choice of the representation (or en-
coding) of the trajectory. One of the most suitable rep-
resentations, which facilitates adaptation, are the Dy-
namic Motion Primitives (DMP) [10]. In the standard
DMP formulation, the motion in each task coordinate is
represented as a damped mass-spring system perturbed
by an external force. Such a system can be modeled

with a set of differential equations

v̇ =
1

τ
(K(g − y)−Dv + f(x)) , (3)

ẏ =
v

τ

where v and y are the velocity and position of the sys-
tem, x is the phase variable, which defines the time evo-
lution of the trajectory, τ is the temporal scaling factor,
K is the spring constant, and D is the damping. The
phase variable x is defined by

ẋ = −αx
τ
. (4)

For the trajectory generation it is necessary that the dy-
namic system is critically damped and thus reaches the
goal position without overshoots. A suitable choice is
D = 2

√
K, where K is chosen to meet the desired ve-

locity response of the system. Function f(x) is a non-
linear function which is used to adapt the response of
the dynamic system to an arbitrary complex movement.
A suitable choice for f(x) was proposed by Ijspeert et
al. [11] in the form of a linear combination of M radial
basis functions

f(x) =

∑M
j=1 wjψj(x)∑M
j=1 ψj(x)

x, (5)

where ψj are Gaussian functions defined as ψj(x) =
exp(− 1

2σ2
j
(x − cj)2). Parameters cj and σj define the

center and the width of the j-th basis function, while
wj are the adjustable weights used to obtain the desired
shape of the trajectory. A suitable method for deter-
mining weights wi from the demonstration trajectory is
locally weighted least square regression [11].

First, in order to obtain an example for the imitation
we have recorded the motions of a human player by the
kinesthetic teach-in. In the simulation environment, we
have used the haptic device “Phantom Omni”, which
controls the model of the ball-on-rope. In another setup,
a haptic device might be substituted by a real time mo-
tion capture system ’OptoTrack’. In our integrated en-
vironment this can be done by simply substituting the
model block. This makes the system transparent regard-
ing the use of different hardware. As previously stated,
the captured trajectory has to be adjusted according to
the robot dynamics. For that, we have first encoded a
set of training trajectories into DMP formulation. Each
trajectory has been encoded using 22 parameter, goal
g, duration τ and 20 weights wi of radial basis func-
tions (M = 20). The resulting parameters were av-
eraged over entire set of the trajectories. It turned out
that we can adapt the captured trajectory to the simu-
lated robot dynamics by tuning just few of parameters,
among which the temporal scaling τ was dominant.

5 Simulation of the reinforcement learn-
ing

In this section we present methods and tools for learn-
ing of swing-up motion for the ball-in-a-cup without



Fig. 4 Cup trajectory during the ball-in-a-cup game ob-
tained with imitation learning

any previous knowledge of the system or the environ-
ment. We decided to evaluate SARSA-learning algo-
rithm for this problem [12]. All previous studies used
the function approximation reinforcement learning al-
gorithms [13, 14], where the goal of the learning pro-
cess was to tune the parameters of the swing-up trajec-
tory. In most cases the learning process starts with a
pre-learned trajectory, e.g. trajectory obtained from the
kinesthetic guidance. On contrary, SARSA algorithm
can be applied without any presumption of the envi-
ronment model and has to implicitly learn the system
dynamics trough exploration. During the exploration,
the system collect rewards and tunes the control policy
based solely on the accumulated rewards. The modi-
fied algorithm for the SARSA learning with eligibility
traces [12] is described by the following Eq.

Q(st, at)← Q(st, at)+ (6)
α[rt + γQ(st+1, at+1)−Q(st, at)]e(s)

et(s) =

{
γλet−1(s) if s 6= st
1 if s = st

, (7)

where Q is the is the action-value function and st and
at are the state and the action of the agent at time t,
respectively. α and γ denote the learning rate and dis-
count rate; these two parameters determine the learning
rate and the convergence, respectively. rt denotes the
reward associated with the agent state, obtained in the
current time t. The Eq. 7 describes the exponential de-
cay of the eligibility traces. Each time the agent is in a
state st, the trace for that state is reset to 1. Eligibility
traces help the agent to enhance the learning speed on
good actions. One of the key properties of the learning
system is how we assign states s and actions a. Best
results were obtained by selecting states composed of
the cup position x, cup velocity ẋ, angle between the
cup and the ball ϕ and angular velocity ϕ̇. For SARSA
learning, states have to be discretized. The cup position
has been described with two values, cup velocity with
three values, ball angle with 18 values spanning over
the entire circle and the ball angular velocity with 3 val-
ues, forming all together a set of 324 values. The action

value has been chosen to be the cup acceleration ẍ de-
scribed with 5 values spanning from the maximal neg-
ative to the maximal positive acceleration. Commonly,
ε-greedy method is used for the learning. In our case
we have obtained a much faster learning with a random
set of harmonic trajectories used as input trajectories in
the entire rollout. The learning goal was to swing the
ball to the desired angle ϕ(t0) with the desired angu-
lar velocity ϕ̇(t0). The behavior of the learning system
is determined mostly by the reward assigned to current
state. The final state was rewarded with a positive re-
ward.

One of the major problem of swing-up learning is the
limited displacement of the cup in x direction due to the
limited workspace of the robot. To prevent the robot
from reaching its limits, the excessive displacement x
has been penalized by a negative reward. The learn-

Fig. 5 Reward during swing-up learning

Fig. 6 Learned ball and swing-up trajectory

ing requires many trails in order to learn the appropri-
ate policy, which makes the simulation almost indis-
pensable tool for robot learning. In average, 220 to 300
rollouts have been required to learn the swing-up trajec-
tory. During the learning, the system implicitly builds
models of the system kinematics, dynamics and limita-
tions. In real environment, learning has to be continued
in order to match the dynamics of the real robot, using
the final value of the action value matrix Q, learned in
the simulation, as an initial action value matrix in the
real robot. Figure 5 shows one example of the obtained



rewards during the learning. As we can see from the
Fig. 5, the learning ends after approx. 260 rollouts, the
robot repeats the learned trajectory and gets a constant
reward. Figures 6 and 2 show the ball trajectory, the
learned robot trajectory and the simulated robot pose
after the successful learning, respectively. Note that the
robot does not necessarily learns equal swing-up trajec-
tory if we repeat leaning procedure again, because an
infinite number of trajectories can swing-up the ball to
the desired height. Note also that the learned trajectory
different from the human demonstrated trajectory (Fig
4). Human demonstrator has used only one swing to
swing-up the ball and the swing-up trajectory is in the
x − y plane. In contrast to that, the robot has been in-
structed to learn the swing up trajectory by moving x
coordinate only. Due to the restricted accelerations, the
learned trajectory has required two swings in order to
swing-up the ball to the desired height.

6 Conclusions
The concept of the presented simulation environment is
a result of our experience using the robots in research
and education. It has proved that our environment is a
very useful and effective tool for fast and safe devel-
opment and testing of advanced control schemes and
task planning algorithms, including force control and
visual feedback, as well as learning algorithms, which
are more and more required in contemporary service
and humanoid robotics. The main part is implemented
in MATLAB/Simulink and we have developed models
for the robots and sensors used in our laboratory. To
integrate the variety of components in an unique frame-
work we have decided to allow the use of different tools
for their simulation. So, the simulation environment
can be composed of more than one application and the
ethernet is used for the communication between them.
In this way, our environment is very open and can be
very easily extended and adapted to different require-
ments and applied to any types of robotic manipulators.
One of the most important features of our simulation
environment is that the testing on real robots is made
very easy; the real systems is simply replaced in the
simulation loop by proper interface blocks. For that
purpose, we have developed interfaces for the robots
and sensors. The presented control design environment
has proved to be a very useful and effective tool for fast
and safe development and testing of advanced control
schemes and task planning algorithms, including force
control and visual feedback. The software can be very
easily extended and adapted to different requirements
and applied to any types of robotic manipulators. Last
but not least, it is an efficient tool for educational pur-
poses.

7 References
[1] P. I. Corke. A Robotics Toolbox for MATLAB.

IEEE Robotics & Automation Magazine, 3(1):24
– 32, 1996.

[2] The Mathworks. SimMechanics, User’s Guide,
2005.

[3] Open Dynamics Engine, http://ode.org/ode.html.
[4] Symblic Dynamics, Inc. SD/FAST User’s Manual,

1994.
[5] Modelica, http://www.modelica.org.
[6] Newton Game Dynamics,

http://physicsengine.com/.
[7] L. Žlajpah T. Petrič. Application of neural net-

works for dynamic modeling of robotic mech-
anisms. In Proceedings of the 7th EUROSIM
Congress on Modeling and Simulation, Prague,
Czech Republic, 2010.

[8] RoboWorksTM: http://www.newtonium.com/public
html/Products/RoboWorks/RoboWorks.htm.

[9] Blender: http://www.blender.org/.
[10] Stefan Schaal, Peyman Mohajerian, and Auke

Ijspeert. Dynamics systems vs. optimal control
– a unifying view. Progress in Brain Research,
165(6):425–445, 2007.

[11] A.J. Ijspeert, J. Nakanishi, and S. Shaal. Learn-
ing Rhythmic Movements by Demonstration us-
ing Nonlinear Oscilators. In Proc. of the 2002
IEEE/RSJ Int. Conf. On Intelligent Robots and
Systems, pages 958 – 963, Lausanne, Suisse,
2002.

[12] R. Sutton and A. Barto. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press,
1998.

[13] K. Doya. Reinforcement learning in continuous
time and space. Neural Computation, 12(1):219 –
245, 2000.

[14] J. Peters J. Kobler. Policy search for motor prim-
itives in robotics. Neural Information Processing
Systems (NIPS), 2008.


