
EXTENSIVE TRANSPORTATION SERVICE
SYSTEMS AND THEIR FLEXIBLE

SIMULATION MODELING
Michal Lekýr1, Valent Klima1

1 University of Žilina, Department of Transportation Networks,
Faculty of Management Science and Informatics, Slovak Republic

Michal.Lekyr@fri.uniza.sk, Valent.Klima@fri.uniza.sk

Abstract

Largely developing area of computer simulation brings many unresolved issues when it comes
to building extensive simulation models of complex service systems. For the purpose of creating
the simulation models of such systems it is necessary to choose appropriate tools and approaches,
which allows designers to respect the real system structure and create models with highest values
of model quality indicators. Such models must be flexible and easy to maintain. The fact is that
without existence of adequate supportive environment the work with complex simulation models,
regarding their size and need of detailed modeling becomes very hard to accomplish and in some cases
even unmanageable. One of the contributions of our work is to push forward imaginary frontiers,
when the simulation model is still manageable towards more complex models. Presented solutions
enable us to create far more extensive models as we could accomplish in the past. For these purposes
we are using our own agent architecture ABAsim and our software tool for building generic
simulation models called ABAbuilder. This paper also talks about one generic simulation model called
Villon, which is suitable for simulating processes in railway transportation terminals.

Keywords: extensive service systems, conceptual modeling, nonprocedural algorithms,
generic simulation models, large scale simulation modeling

Presenting Author’s biography

Michal Lekýr graduated at the University of Žilina in 2003, where he in the same year
started PhD study and graduated in 2007. For two years he worked at the Boston
University, in Brain and vision research lab as a research assistant and scientific
programmer. Currently he is working as an assistant professor, teaching and doing
research in simulation and computer graphics as well as teaching assembly language
programming course.

1 Transportation service systems

The most important and evidently the most resource
consuming part of a logistic chain is the transfer
process, often called transportation logistics. The
transfer process is a combination of the actual
movement of commodities along the desired route as
well as the necessary operations which are being
carried upon transported commodities in logistic
junctions. These necessary operations (manipulations)
are also known as the service processes and are being
conducted at specialized locations known as
transportation terminals. At transportation terminals,
an individual transported quantum or - considering
from the service system viewpoint - a transported
entity may originate, may be disposed, and at the same
time these entities are the main subject of services
provided by these terminals.

Undoubtedly, the most complicated situation from the
manipulation perspective and process control occurs
in service systems, where the infrastructure is
composed mostly of railway tracks, where the mobile
service resources are mostly locomotives and where
the elements undergoing various services are mostly
railway vehicles as well. Railway logistic terminals
and terminals with a significant portion of railway
infrastructure belong to this category of service
systems. Terminals with such characteristics are in the
main focus of our attention.

Let’s name a few examples of railway logistic
terminals, where the common problems concerning
the infrastructure design and planning and the traffic
control appears, and also where the similar approach
to their solution is applicable: marshalling yards,
passenger railway stations, industrial sidings,
specialized railway logistic centers (railway depots),
multimodal transportation terminals (e.g. container
terminals).

We can say that a transportation node can be
considered as a generalized service terminal which
from the point of view of the infrastructure layout and
traffic operations should be understood in a wider
sense as an integration of terminals of several types.
For example, a need may arise to integrate a freight
train station a passenger railway station and
a corresponding depot into a single transportation
node.

2 Problems of design, implementation
 and model usage / re-usability

As we go from smaller and less detailed models to
more detailed models with higher number of elements,
we run into problems with handling such model
design and creation and also with the modification and
model re-use.

More specifically, these are the following issues:

 How to ensure that the construction of large-scale
model is manageable or even how to increase the
limiting frontier when a model is still construction
manageable.

 How to reduce the time needed to construct and
verify a model.

 How to ensure the greatest possible flexibility of
the model and re-usability of its parts.

 How to extend the area of applications of a model
(generic model building).

3 Simulation principles, architectures
 and software tools

For the most efficient means to manage the creation of
simulation models of large-scale transportation
systems, we consider the use of appropriate agent
architecture (some of the existing architectures are
described in [1]). Our emphasis is on the notation of
nonprocedural algorithms - in particular the possibility
to directly execute the conceptual model.

3.1 Hierarchical agent architecture

Management structure of service systems (thus
transportation logistics systems) is typically
hierarchical. Since we consider the hierarchy to be
important premise for solutions leading to desired
model flexibility, agent architecture must reflect the
structure of management entities in hierarchical
structure of model agents. Based on the strictly
required hierarchical structure, model designers can
take advantage of the following features:

 Replacing any agent or submodel with another
agent or submodel. This way designer can modify
the management of respective subsystem - typical
and often utilized reason for such a change is the
requirement to model the subsystem at more (or
less) detailed level.

 Merging of more submodels (agent trees) to one,
realized through adding a new boss agent
responsible for coordination of merged submodels.

 Model configuration by selecting from library of
reusable agents or submodels.

Thanks to the hierarchical structure of model agents
three types of addressing can be implemented. Each
inter-agent message can be send in following ways:

 as a standard addressed message – in this case, the
message addressee field is filled with the address
of responsible agent, which can process the
message (the message is listed in agent’s direct-
messages register),

 as a partially-addressed message – if the message
is addressed to a submodel (represented by the
boss agent of the model; this will then, based on its

mediated-messages register, determine the agent
responsible for message elaboration,

 as a non-addressed message – if the sending agent
is unable or not willing (due to the flexibility
requirements) to determine responsible agent or
even submodel, the message can be sent with
empty addressee field.

If a non-addressed or partially-addressed message is to
be delivered, then a special addressee searching
algorithm, based on systematic hierarchical
investigation of message registers, is automatically
initiated by run-time infrastructure. Thus, it depends
only on a model designers if they prohibit a selected
submodel from addressing its agents (except boss) –
such a command enables the making of safer
structural changes/modification to that submodel.
Total flexibility is reached only if non-addressed
messages are allowed; however, this concept is
connected with more time-consuming demands.

3.2 Nonprocedural algorithms

A possible way of increasing the flexibility of a
simulation model is the utilization of nonprocedural
(graphically editable) algorithms, which are being
executed at model runtime.

3.2.1 Network charts

Network charts [2] seem to be a suitable tool for
describing service algorithms (technologies), which
typically include parallel activities (e.g. service of a
train, after entering the marshalling yard). Network
charts provide clear evidence of activity relationships
(parallelism, dependency) and they can be constructed
without knowing the duration of actual activities. Each
edge of the chart is representing a single activity.
Nodes of the chart can be considered as synchro-
nization points of the operating procedure.

Parameterized derived activities can be incorporated
into network charts - they define succession and
mutual dependence of activities in a service process.
Defined derived activities are reusable and can be
used in more than one technology. Network charts
may be created in a comfortable graphical editor with
support for automatic validation of entered
technologies (guarding required succession of some
activities and appropriate resource handling).

A finished network chart is then assigned to a
customer (e.g. a train or truck). Once the technology
has been defined it can be reused – the same
technology can be applied to a different customer with
the same attendance procedure. Since the network
chart is a human readable notification it makes the
modification of service procedures of a customer very
flexible – user can modify parameters or resources,
change mutual dependency of activities (change the
network chart drawing) or even exchange the whole

technology at once (simply by assigning another
technology from the list of defined technologies)

3.2.2 Petri nets

Petri nets represent an appropriate formalism for
design of logic related to selected agents [3]. It means
in fact that using the mentioned formalism enables
rapid and flexible prototyping of relevant Petri nets,
which are consequently involved into a simulation
model based on agent architecture.

Fig. 1 Petri net example - internal logic
of a simulation agent

So we can claim that utilization of Petri nets within
agent architecture supports high degree of flexibility,
because it is possible to make readily different
alternative variants of agents (within the frame of
corresponding editor without the need to change the
source code of simulation model). In addition, Petri
nets can be properly analyzed and verified before
becoming a part of a simulator. An example of this
formalism can be seen on figure 1.

3.3 Simulation model live cycle

The process of simulation modeling can be divided
into several separate stages, each stage should be
completed before starting the next stage. On figure 2
the different phases of simulation model development
are shown.

The first phase is the analysis phase - we insist on
understanding the system behavior and naming
requirements and its specification. It is not possible to
speed up this phase using some supportive software
environment. Analysis should be done deeply to avoid
later questions about system functionality or desired
objectives.

The analysis of the modeled system is followed by the
design or also called conceptual modeling [4] phase.
When creating a conceptual model the modeler must
utilize gathered knowledge from the previous stage
create the design of the simulation model. In our case,
the focus is on simulation models of extensive
transportation systems which requires - as stated
before - design of the following features:

a) hierarchical architecture of model agents

b) communication (message) mechanism between
agents

c) model behavior design, which is based on the
incoming messages into model agents in our case
Petri nets can be used

d) technologies described by a chosen formalism in
our case Network charts can be used

Fig. 2 Live cycle of a simulation model

The efficiency of the conceptual modeling phase
could be greatly enhanced by automation using
software tools. Following article will explain more on
this subject.

After having created the conceptual model, the
implementation phase consists of coding the
simulation model in a chosen programming language.
The computer program is being created based on the
conceptual model from the previous phase. At the end
of the implementation phase, the created program has
to be transferred into binary executable.

Verification phase is important to review previous
phases and verify, whether there are any design or
implementation errors. Next step is the model
validation, where the real system behavior is
compared to the behavior of the simulation model.

Execution phase follows after all the previous phases
have been successfully fulfilled, the simulation model
is ready to be used and the modeler can carry out
simulation experiments.

3.4 Simulation model quality indicators

The essential aim of simulation model designers and
users is to design and work with high-quality
simulation models. The term "quality of a model" is
too general, therefore we choose some external quality
factors (perceived by the user of a model) as well as
internal quality factors (indicative for the quality of
the internal design of a model) to describe the criteria
of the quality of simulation models:

Accuracy is the ability to precisely model the situation
for which it has been designed for. It is a primary
factor in assessing the quality of a model. If the
simulation model doesn't have the proper behavior all
the other criteria of quality becomes secondary.

Robustness of the simulation model is the ability of
the model to work under unexpected or abnormal
conditions. It describes how the model is able to
behave and keep running when it's exhibited to
unexpected data inputs or situation that is not
specified. Robustness criteria can be viewed in a
couple of ways:

a) The robustness of the model as a software product
- in this respect, the model is robust if it can
correctly respond to unexpected internal
situations. Internally robust model must react to
an unforeseen situation, warning the user with an
understandable report of the problem (e.g. invalid
attempt to read data, etc.). Robust model does not
lead to "catastrophic events", i.e. generate general
software exception.

b) The robustness of the model as an experimental
environment - in this respect the model is robust
if it can treat unexpected internal stochastic
impacts (e.g. late arrival of a train into the station,
etc.).

When we speak about the robustness of the model we
have in mind the robustness of the model as a software
product since the other criterion of the robustness is
influenced by the simulation model design.

Flexibility is the quality factor, which defines how
difficult it is to adapt the simulation to changes in
specification or convert it for simulation purposes of
other systems belonging to the same category. The
flexibility issue arises when models grow in
complexity and become extensive. Large models
require high levels of flexibility in these aspects:

a) Design clarity - understandable and clear
architecture of agents allows designers to make
changes more easily.

b) Decentralization - the more self-sustaining
components are forming the model, the more
likely we have a situation where a simple change
will affect only one or a few interacting
components and this change will not cause a
chain reaction of necessary changes throughout
the system.

c) Independence - changes in one part of the model
will not cause necessity to make changes in
different parts of the model.

Re-usability is the ability of different parts of the
model to be used repeatedly or the ability of the whole
model to be used as a submodel of another model.
Since it appears that some parts of the model could be
used in other models, we should be able to exclude
those parts and re-use them. A special case is the

situation where we substitute the whole model or its
parts for another model, which can serve the same
tasks, but using another internal algorithms. This
ability also plays important role in the process of
working with extensive models.

Efficiency means good utilization of hardware
components (i.e. CPU, memory, etc.). In terms of the
functionality of the model this is an important aspect
of quality assessment, especially as the criterion for
simulation speed and memory requirements. Negative
influence on the model efficiency may have
inappropriate data structures or algorithms. It must be
admitted that large simulation models in the aspect of
efficiency do not always have satisfactory results.

The ease of use is not the criterion of how easy or
difficult it is to work with the model itself, but in our
case when we are talking about this criterion we have
in mind the simplicity of conceptual modeling,
implementation, verification and experimenting with
the model.

Some of the factors for assessing the quality of the
model may be mutually incompatible. It is sometimes
necessary to make certain compromises and to reduce
the degree to which individual factors are fulfilled.

3.5 Model development approaches

At present, two main approaches exist. In first case,
the conceptual model is created in a written form, and
is followed by the next phase, where the conceptual
model from the written form is being transferred into
the source code of a program, which after compilation
becomes standalone application. This approach is
ineffective, especially in development of extensive
and complex simulation models. Converting con-
ceptual model from a written form into the source
code is a time consuming task which introduces a high
potential of making errors. Also, modifications of the
system are mostly in larger systems extremely
complicated, therefore the achieved level of flexibility
and re-usability is very limited. Therefore this
approach is not recommended when making large and
detailed simulation studies.

The second commonly used approach is more suitable.
It uses a compact software environment which allows
the conceptual modeling in a software tool. We
recognize two types of such tools, it's either a CASE
tool allowing the creation of the conceptual model in a
graphical form and then automatically creating model
source codes using embedded source code generator
(e.g. [5]). Another type of supportive software
environment (e.g. [6]) commonly used is a simulation
tool allowing model designer and user to carry out all
the phases of the model live cycle except the analysis
phase, which cannot be automated. This approach is
slightly preferable. CASE tool can convert the
conceptual model into the source code automatically
jumping over the implementation phase. Although this

approach is slightly better it also has some serious
shortcomings.

When using simulation CASE tools we run into
problems with the flexibility. The problem arises
when modeler needs to make changes into the
conceptual model. After such change the source codes
have to be re-generated. The problem comes forward
especially when the programmer made custom
changes in the source codes and added some
information (which is always necessary in order to
make the model functional). This information is lost
after re-generating the source codes, and must be
manually inserted again. This significantly decreases
the level of flexibility and re-usability of the system. It
also introduces a high potential in making
implementation errors by accidently changing the
generated source codes. These errors are very hard to
trace.

With the usage of simulation packages we often run
into problems with a limiting set of components that
are provided by the simulation tools. These tools often
provide bounded set of tools and the modeler can't go
beyond this set. Another limitation is in size of the
model, these tools often have limitations in number of
components that are used in the model. Such tools
often provide the user with their own scripting
languages, but most of the times user can't go beyond
the set of provided simulation tools. All these factors
are negatively influencing the construction of
extensive simulation models with a large number of
system elements.

As mentioned above the current software tools bring
number of unresolved problems into the large model
development process, therefore we suggest another
approach and techniques.

3.6 Software support as aim of speeding up model
live cycle phases and increasing quality indicators

Some of the phases of simulation model live cycle are
quite time consuming, especially the design and
implementation phase.

The fact is that in the implementation phase a high
potential for making errors exists. Our effort is to the
most possible extent decrease the potential for making
errors in the model development process and automate
as much as possible some of the time consuming
phases. One possibility to improve the model design
efficiency would be to create an environment, in
which all the phases of the model development are
carried out. In this type of environment the model
would have to be designed (by the GUI), implemented
(where a conceptual model becomes both machine and
human readable) and executed. On one hand this
mentioned approach is advantageous, because it
allows the modeler to carry out all the modeling
phases in one compact environment. On the other
hand, this approach brings some limitations.

The programmer cannot directly interfere with the
simulation model source code. This means, that the
simulation model can be constructed only from
components contained in the environment. When
trying to build large and detailed models this factor is
very limiting.

Suggested solution is oriented to minimize unwanted
effects coming along with realization of particular
stages of simulation model development. Basic idea
comes from a strong relation between the conceptual
model and the implementation.

Fig. 3 Linkage between agents, their internal logic
(Petri nets, Network charts) and the executable

methods written directly into the source codes by
the GUID.

We suggest that the conceptual model (the output
from the design phase) is directly used for the
simulation purposes. That means the conceptual
model has to be both human and machine readable.
The fact, that the conceptual model becomes machine
readable greatly decreases the amount of the generated
source codes, because most of the generated source
codes would have been used to describe the basic
model structure. The conceptual model should be
exported in a binary format and the simulation kernel
must be capable of loading and using this format for
simulation purposes.

To give the programmer virtually unlimited versatility
in the simulation model enhancement, we had to solve
the problem of interconnection of the exported binary
structure and the programmed source codes. This was
solved by giving every element of the simulation
model (e.g. agent, message edge, assistant etc.) a
unique identifier GUID (globally unique identifier),
which corresponds to an execution method containing
the source code of this element. By this mechanism
(figure 3) we were able to create a hybrid system,
where the simulation kernel is directly using the
conceptual model which is interconnected with the
simulation model source code.

In application of this design, the term conceptual
model got new enhanced meaning. Now it represents
not only the simulation model structure and
configuration, but it also represents an executable part
of the simulation model. The simulation kernel is
capable of using the binary format of the conceptual

model without requiring the source codes of the
conceptual model. In application of this approach,
conceptual model becomes human readable and also
readable and executable by the computer. As a result
we have significant reduction of simulation model
source codes, which indirectly increases the flexibility
of the simulation model, and its robustness. This
approach also greatly contributes to the implemen-
tation phase and reduces the error potential in model
programming.

This approach has a positive effect on various quality
indicators. First of all, as mentioned earlier it increases
the flexibility of the system, by reducing the amount of
the source codes: Most of the source codes describing
the model structure and model logic don't have to be
generated at all. With lowering the amount of source
codes used, we increased the robustness of the model,
since the modeler is not allowed to access the model
structures and therefore cannot accidently or on
purpose change the behavior of the model. Since all
the design and modeling is done in a graphical form,
we increased the ease of use quality indicator. It's
more natural for modelers to use graphical language to
describe the model structures and reactive logic
utilizing Petri nets and Network charts. Another
positively influenced quality factor is the re-usability
of the model or of its parts. This factor is very
significant when trying to build generic simulation
models.

Our hybrid system with all the advantages of CASE
tools give the model designer virtually unlimited
space to enhance the model behavior by writing the
source codes. Each component of the model has its
execution method, which can be implemented in a
standard development environment (e.g. Microsoft
Visual Studio, Delphi, etc.). These execution methods
are connected with the model structure using GUID,
therefore there is no need to recreate these source
codes. The only need is to configure the linkage
methods, which is done semi-automatically with the
help of built-in simple source code generator.

4 Implementation example

The previous section of the article describes the
lifecycle of a simulation model and introduces our
approach in improving the modeling process. In this
section we will talk about the generic model builder
software environment called ABAbuilder, which is
based on our own agent architecture ABAsim (Agent
Based Architecture of Simulation Models). More
about this architecture can be found in [7].

Next section briefly talks about generic simulation
model Villon. This simulation model has been
designed for making simulation models of a wide
range of transportation service systems.

4.1 ABAbuilder software environment

In this section we will briefly discuss the features of
the ABAbuilder software environment which proved
its important role in conceptual modeling process. For
designer it makes the designing process semi-
automated, with a variety of functions for altering the
model, such as changing the hierarchy of agents,
testing different message models, etc. From the
programmers perspective it speeds up the model
implementation with utilizing the source code
generator which is capable of generating the basic
model structures.

Fig. 4 Screen capture of the ABAbuilder
software environment

ABAbuilder is a software environment based on the
ABAsim architecture and its principles. It supports
several aspects of model development including
system analysis, design of communication, and use of
methodologies, prototyping and model maintenance.
One of the greatest contributions of the architecture is
the flexibility of model configuration. ABAbuilder is
capable of creating large palette of alternative internal
components, which can be used to construct the
simulation scenario. The experimenter is allowed to
change executive characteristics of each of the system
agents by using different components with
preprogrammed behavior and decision making
algorithms.

The similarity of control structures from the real world
allows relatively easy design of control components of
the simulation model using ABAbuilder software
environment. A simulation model structure can be
described by the hierarchy of system agents (figure 4).
From the ABAbuilder point of view, not only agents,
but also their internal components are considered as
model building base.

To be able to accomplish individual phases of the
simulation model live cycle this environment had to
be divided into three interacting modules: The visual
environment displays the simulation model from
different perspectives. Its main purpose is to display
the agent hierarchy and internal components of each
agent (Petri nets). It allows users to add new agents to

the hierarchy, edit their internal components and
define the message flow inside of the model. Petri Net
editor is used to define the reactive logic of each
agent. Users are allowed to look at all aspects of the
hierarchy at once, or they can apply various sets of
filters.

The error localization module works continuously and
it checks the model each time a change has been
applied. It provides user with two kinds of messages:
error messages and warnings. Errors messages appear
when user tries to do something which is not allowed
by the methodology of creating models based on the
ABAsim architecture. Warnings inform users of
issues, that are not critical for the model but might be
dangerous during the runtime.

When the decision is made by the user and the model
is ready for deployment the source code generator
module comes into use. This module first of all creates
so called execution methods of model components.
These methods are empty and the programmer is
capable of implementing custom model behavior. In
the next step it generates the method which
interconnects these execution methods with model
elements by the GUID. Libraries containing the
simulation kernel, which allow compiling a standalone
application, are provided as a part of the ABAbuilder
software environment. These libraries are actually
part of the simulation project.

Creating complex simulation models in the ABAsim
architecture such as the model of a container terminal
or a marshalling yard would be very hard to
accomplish, if not almost impossible without
existence of this software environment.

4.2 Generic simulation model Villon

As a bright example of architecture possibilities and
flexibility, generic simulation model Villon [8] can be
mentioned. Villon is detailed microscopic simulation
model of logistic junction operation with predominant
transportation processes. The junction is understood to
be e.g. railway marshalling yard, railway station for
passenger transport, factory sidings, airports, container
terminals, etc. Utilizing the ABAsim architecture,
Petri nets and Network charts Villon tool is flexible
enough to model different means of transportation
considering their specific attributes.

Using Villon one can build simulation models of
railway marshaling yards with only railway traffic, but
also combined models, with inter-modal operation.
Villon was successfully used in commercial
environment to provide services for many clients,
among them are national railway companies from
Germany, Austria and Switzerland, private companies
BASF, Volkswagen and many others.

5 Conclusion

Given the current state of the art information
technologies and simulation methods, the important
decisions making process in the management of
complex service systems should not be taken without
the previous modeling of the consequences by the
means of discrete simulation. Costs associated with
the simulation study represent only a fraction of the
cost of the damage that could be caused by bad
decision applied in reality.

In developing extensive models of complex
transportation service system systems it is necessary
to choose the right methods, that allow modelers to
respect the structure of the real system and allows
them to create a flexible, open and easily maintainable
simulation models. The fact remains that without
appropriate architecture e.g. ABAsim and supporting
software environment e.g. ABAbuilder the task of
detailed modeling becomes very complicated, in some
cases might be even unmanageable. The solutions
presented in this article unlike from the past allows us
to create much larger models and models meeting high
quality requirements.

6 References

[1] Davidsson, P., Henesey, L., Ramstedt, L.,
Törnquist, J., Wernstedt, F.: Agent-Based
Approaches to Transport Logistics, Whitestein
Agent Technology series, 2005

[2] Adamko,N., Klima,V.: Definition of Operating
Procedures in Generic Agent Based Simulation
Model of Transportation Logistic Terminal.In:
Proceedings of European Simulation and
Modelling Conference 2008 pp. 312-316, Le
Havre, France 2008.

[3] Kavicka, A.: Petriho síť s rozhodovacími
přechody aplikovaná v rámci ABAsim
architektury simulačního modelu, Sborník
přednášek z 37.mezinárodní konference "MOSIS
'03"- konané v Brně, MARQ - Ostrava, 2003,
str.373-380, ISBN 80-85988-86-0

[4] Takashi, I., Yoshiaki, M., Nozomu, A.: From
Conceptual Models to Simulation Models: Model
Driven Development of Agent-Based Simulations,
Faculty of Policy Management, Keio University,
2003

[5] Féliot, D., Bellissard, L., De Palma, L.: OLAN
Tools, SIRAC Project, St. Martin, France

[6] http://www.simcreator.com/

[7] Adamko, N., Klima, V., Kavička, A., Lekýr, M.:
Flexible hierarchical architecture of simulation
models, Proceedings of European simulation and
modelling conference, Eurosis, Paris, 2004,
pp.30-34

[8] Klima, V., Kavička, A., Adamko, N. 2001.
“Software tool VirtuOS – simulation of railway
junction operation”, In: Proceedings of ESM 2001
conference, Prague, Czech republic

ACKNOWLEDGEMENT

This work has been supported by the National
Research Program of Czech Republic under project
No. MSM 0021627505 "Theory of Transportation
Systems"

