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Abstract 

 
Largely developing area of computer simulation brings many unresolved issues when it comes               
to building extensive simulation models of complex service systems. For the purpose of creating              
the simulation models of such systems it is necessary to choose appropriate tools and approaches, 
which allows designers to respect the real system structure and create models with highest values                
of model quality indicators. Such models must be flexible and easy to maintain. The fact is that 
without existence of adequate supportive environment the work with complex simulation models, 
regarding their size and need of detailed modeling becomes very hard to accomplish and in some cases 
even unmanageable. One of the contributions of our work is to push forward imaginary frontiers, 
when the simulation model is still manageable towards more complex models. Presented solutions 
enable us to create far more extensive models as we could accomplish in the past. For these purposes 
we are using our own agent architecture ABAsim and our software tool for building generic 
simulation models called ABAbuilder. This paper also talks about one generic simulation model called 
Villon, which is suitable for simulating processes in railway transportation terminals.  
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1 Transportation service systems 

The most important and evidently the most resource 
consuming part of a logistic chain is the transfer 
process, often called transportation logistics. The 
transfer process is a combination of the actual 
movement of commodities along the desired route as 
well as the necessary operations which are being 
carried upon transported commodities in logistic 
junctions. These necessary operations (manipulations) 
are also known as the service processes and are being 
conducted at specialized locations known as 
transportation terminals. At transportation terminals, 
an individual transported quantum or - considering 
from the service system viewpoint - a transported 
entity may originate, may be disposed, and at the same 
time these entities are the main subject of services 
provided by these terminals. 

Undoubtedly, the most complicated situation from the 
manipulation perspective and process control occurs 
in service systems, where the infrastructure is 
composed mostly of railway tracks, where the mobile 
service resources are mostly locomotives and where 
the elements undergoing various services are mostly 
railway vehicles as well. Railway logistic terminals 
and terminals with a significant portion of railway 
infrastructure belong to this category of service 
systems. Terminals with such characteristics are in the 
main focus of our attention.  

Let’s name a few examples of railway logistic 
terminals, where the common problems concerning                   
the infrastructure design and planning and the traffic 
control appears, and also where the similar approach 
to their solution is applicable: marshalling yards, 
passenger railway stations, industrial sidings, 
specialized railway logistic centers (railway depots),  
multimodal transportation terminals (e.g. container 
terminals). 

We can say that a transportation node can be 
considered as a generalized service terminal which 
from the point of view of the infrastructure layout and 
traffic operations should be understood in a wider 
sense as an integration of terminals of several types. 
For example, a need may arise to integrate a freight 
train station a passenger railway station and                  
a corresponding depot into a single transportation 
node. 

2 Problems of design, implementation    
 and model usage / re-usability 

As we go from smaller and less detailed models to 
more detailed models with higher number of elements, 
we run into problems with handling such model 
design and creation and also with the modification and 
model re-use.  

More specifically, these are the following issues: 

 How to ensure that the construction of large-scale 
model is manageable or even how to increase the 
limiting frontier when a model is still construction 
manageable. 

 How to reduce the time needed to construct and 
verify a model. 

 How to ensure the greatest possible flexibility of 
the model and re-usability of its parts. 

 How to extend the area of applications of a model 
(generic model building). 

3 Simulation principles, architectures 
 and software tools 

For the most efficient means to manage the creation of 
simulation models of large-scale transportation 
systems, we consider the use of appropriate agent 
architecture (some of the existing architectures are 
described in [1]). Our emphasis is on the notation of 
nonprocedural algorithms - in particular the possibility 
to directly execute the conceptual model.  

3.1 Hierarchical agent architecture 

Management structure of service systems (thus 
transportation logistics systems) is typically 
hierarchical. Since we consider the hierarchy to be 
important premise for solutions leading to desired 
model flexibility, agent architecture must reflect the 
structure of management entities in hierarchical 
structure of model agents. Based on the strictly 
required hierarchical structure, model designers can 
take advantage of the following features: 

 Replacing any agent or submodel with another 
agent or submodel. This way designer can modify 
the management of respective subsystem - typical 
and often utilized reason for such a change is the 
requirement to model the subsystem at more (or 
less) detailed level. 

 Merging of more submodels (agent trees) to one, 
realized through adding a new boss agent 
responsible for coordination of merged submodels. 

 Model configuration by selecting from library of 
reusable agents or submodels. 

Thanks to the hierarchical structure of model agents 
three types of addressing can be implemented. Each  
inter-agent message can be send in following ways: 

 as a standard addressed message – in this case, the 
message addressee field is filled with the address 
of responsible agent, which can process the 
message (the message is listed in agent’s direct-
messages register), 

 as a partially-addressed message – if the message 
is addressed to a submodel (represented by the 
boss agent of the model; this will then, based on its 



mediated-messages register, determine the agent 
responsible for message elaboration, 

 as a non-addressed message – if the sending agent 
is unable or not willing (due to the flexibility 
requirements) to determine responsible agent or 
even submodel, the message can be sent with 
empty addressee field. 

If a non-addressed or partially-addressed message is to 
be delivered, then a special addressee searching 
algorithm, based on systematic hierarchical 
investigation of message registers, is automatically 
initiated by run-time infrastructure. Thus, it depends 
only on a model designers if they prohibit a selected 
submodel from addressing its agents (except boss) – 
such a command enables the making of safer 
structural changes/modification to that submodel. 
Total flexibility is reached only if non-addressed 
messages are allowed; however, this concept is 
connected with more time-consuming demands.  

3.2 Nonprocedural algorithms 

A possible way of increasing the flexibility of a 
simulation model is the utilization of nonprocedural 
(graphically editable) algorithms, which are being 
executed at model runtime.  

3.2.1 Network charts 

Network charts [2] seem to be a suitable tool for 
describing service algorithms (technologies), which 
typically include parallel activities (e.g. service of a 
train, after entering the marshalling yard). Network 
charts provide clear evidence of activity relationships 
(parallelism, dependency) and they can be constructed 
without knowing the duration of actual activities. Each 
edge of the chart is representing a single activity. 
Nodes of the chart can be considered as synchro-
nization points of the operating procedure.  

Parameterized derived activities can be incorporated 
into network charts - they define succession and 
mutual dependence of activities in a service process. 
Defined derived activities are reusable and can be 
used in more than one technology. Network charts 
may be created in a comfortable graphical editor with 
support for automatic validation of entered 
technologies (guarding required succession of some 
activities and appropriate resource handling).  

A finished network chart is then assigned to a 
customer (e.g. a train or truck). Once the technology 
has been defined it can be reused – the same 
technology can be applied to a different customer with 
the same attendance procedure. Since the network 
chart is a human readable notification it makes the 
modification of service procedures of a customer very 
flexible – user can modify parameters or resources, 
change mutual dependency of activities (change the 
network chart drawing) or even exchange the whole 

technology at once (simply by assigning another 
technology from the list of defined technologies) 

3.2.2 Petri nets 

Petri nets represent an appropriate formalism for 
design of logic related to selected agents [3]. It means 
in fact that using the mentioned formalism enables 
rapid and flexible prototyping of relevant Petri nets, 
which are consequently involved into a simulation 
model based on agent architecture.  

 

Fig. 1  Petri net example - internal logic                         
of a simulation agent 

So we can claim that utilization of Petri nets within 
agent architecture supports high degree of flexibility, 
because it is possible to make readily different 
alternative variants of agents (within the frame of 
corresponding editor without the need to change the 
source code of simulation model). In addition, Petri 
nets can be properly analyzed and verified before 
becoming a part of a simulator. An example of this 
formalism can be seen on figure 1.  

3.3 Simulation model live cycle  

The process of simulation modeling can be divided 
into several separate stages, each stage should be 
completed before starting the next stage. On figure 2  
the different phases of simulation model development 
are shown.  

The first phase is the analysis phase - we insist on 
understanding the system behavior and naming 
requirements and its specification. It is not possible to 
speed up this phase using some supportive software 
environment. Analysis should be done deeply to avoid 
later questions about system functionality or desired 
objectives.  

The analysis of the modeled system is followed by the 
design or also called conceptual modeling [4] phase. 
When creating a conceptual model the modeler must 
utilize gathered knowledge from the previous stage 
create the design of the simulation model. In our case, 
the focus is on simulation models of extensive 
transportation systems which requires - as stated 
before - design of the following features: 

a) hierarchical architecture of model agents  

b) communication (message) mechanism between 
agents  



c) model behavior design, which is based on the 
incoming messages into model agents in our case 
Petri nets can be used 

d) technologies described by a chosen formalism in 
our case Network charts can be used 

 

Fig. 2  Live cycle of a simulation model 

The efficiency of the conceptual modeling phase 
could be greatly enhanced by automation using 
software tools. Following article will explain more on 
this subject.  

After having created the conceptual model, the 
implementation phase consists of coding the 
simulation model in a chosen programming language. 
The computer program is being created based on the 
conceptual model from the previous phase. At the end 
of the implementation phase, the created program has 
to be transferred into binary executable.  

Verification phase is important to review previous 
phases and verify, whether there are any design or 
implementation errors. Next step is the model 
validation, where the real system behavior is 
compared to the behavior of the simulation model.  

Execution phase follows after all the previous phases 
have been successfully fulfilled, the simulation model 
is ready to be used and the modeler can carry out 
simulation experiments.  

3.4 Simulation model quality indicators 

The essential aim of simulation model designers and 
users is to design and work with high-quality 
simulation models. The term "quality of a model" is 
too general, therefore we choose some external quality 
factors (perceived by the user of a model) as well as 
internal quality factors (indicative for the quality of 
the internal design of a model) to describe the criteria 
of the quality of  simulation models:   

Accuracy is the ability to precisely model the situation 
for which it has been designed for. It is a primary 
factor in assessing the quality of a model. If the 
simulation model doesn't have the proper behavior all 
the other criteria of quality becomes secondary.  

Robustness of the simulation model is the ability of 
the model to work under unexpected or abnormal 
conditions. It describes how the model is able to 
behave and keep running when it's exhibited to 
unexpected data inputs or situation that is not 
specified. Robustness criteria can be viewed in a 
couple of ways:  

a) The robustness of the model as a software product 
- in this respect, the model is robust if it can 
correctly respond to unexpected internal 
situations. Internally robust model must react to 
an unforeseen situation, warning the user with an 
understandable report of the problem (e.g.  invalid 
attempt to read data, etc.). Robust model does not 
lead to "catastrophic events", i.e. generate general 
software exception.  

b) The robustness of the model as an experimental 
environment - in this respect the model is robust 
if it can treat unexpected internal stochastic 
impacts (e.g. late arrival of a train into the station, 
etc.).  

When we speak about the robustness of the model we 
have in mind the robustness of the model as a software 
product since the other criterion of the robustness is 
influenced by the simulation model design.  

Flexibility is the quality factor, which defines how 
difficult it is to adapt the simulation to changes in 
specification or convert it for simulation purposes of 
other systems belonging to the same category. The 
flexibility issue arises when models grow in 
complexity and become extensive. Large models 
require high levels of flexibility in these aspects:  

a) Design clarity - understandable and clear 
architecture of agents allows designers to make 
changes more easily.  

b) Decentralization - the more self-sustaining 
components are forming the model, the more 
likely we have a situation where a simple change 
will affect only one or a few interacting 
components and this change will not cause a 
chain reaction of necessary changes throughout 
the system.  

c) Independence - changes in one part of the model 
will not cause necessity to make changes in 
different parts of the model. 

Re-usability is the ability of different parts of the 
model to be used repeatedly or the ability of the whole 
model to be used as a submodel of another model. 
Since it appears that some parts of the model could be 
used in other models, we should be able to exclude 
those parts and re-use them. A special case is the 



situation where we substitute the whole model or its 
parts for another model, which can serve the same 
tasks, but using another internal algorithms. This 
ability also plays important role in the process of 
working with extensive models.  

Efficiency means good utilization of hardware 
components (i.e. CPU, memory, etc.). In terms of the 
functionality of the model this is an important aspect 
of quality assessment, especially as the criterion for 
simulation speed and memory requirements. Negative 
influence on the model efficiency may have 
inappropriate data structures or algorithms. It must be 
admitted that large simulation models in the aspect of 
efficiency do not always have satisfactory results.  

The ease of use is not the criterion of how easy or 
difficult it is to work with the model itself, but in our 
case when we are talking about this criterion we have 
in mind the simplicity of conceptual modeling, 
implementation, verification and experimenting with 
the model.   

Some of the factors for assessing the quality of the 
model may be mutually incompatible. It is sometimes 
necessary to make certain compromises and to reduce 
the degree to which individual factors are fulfilled. 

3.5 Model development approaches 

At present, two main approaches exist. In first case, 
the conceptual model is created in a written form, and 
is followed by the next phase, where the conceptual 
model from the written form is being transferred into 
the source code of a program, which after compilation 
becomes standalone application. This approach is 
ineffective, especially in development of extensive 
and complex simulation models. Converting con-
ceptual model from a written form into the source 
code is a time consuming task which introduces a high 
potential of making errors. Also, modifications of the 
system are mostly in larger systems extremely 
complicated, therefore the achieved level of flexibility 
and re-usability is very limited.  Therefore this 
approach is not recommended when making large and 
detailed simulation studies.  

The second commonly used approach is more suitable.  
It uses a compact software environment which allows 
the conceptual modeling in a software tool. We 
recognize two types of such tools, it's either a CASE 
tool allowing the creation of the conceptual model in a 
graphical form and then automatically creating model 
source codes using embedded source code generator 
(e.g. [5]).  Another  type of supportive software 
environment (e.g. [6]) commonly used is a simulation 
tool allowing model designer and user to carry out all 
the phases of the model live cycle except the analysis 
phase, which cannot be automated.  This approach is 
slightly preferable. CASE tool can convert the 
conceptual model into the source code automatically 
jumping over the implementation phase. Although this 

approach is slightly better it also has some serious 
shortcomings.  

When using simulation CASE tools we run into 
problems with the flexibility. The problem arises 
when modeler needs to make changes into the 
conceptual model. After such change the source codes 
have to be re-generated. The problem comes forward 
especially when the programmer made custom 
changes in the source codes and added some 
information (which is always necessary in order to 
make the model functional). This information is lost 
after re-generating the source codes, and must be 
manually inserted again. This significantly decreases 
the level of flexibility and re-usability of the system. It 
also introduces a high potential in making 
implementation errors by accidently changing the 
generated source codes. These errors are very hard to 
trace.  

With the usage of simulation packages we often run 
into problems with a limiting set of components that 
are provided by the simulation tools. These tools often 
provide bounded set of tools and the modeler can't go 
beyond this set. Another limitation is in size of the 
model, these tools often have limitations in number of 
components that are used in the model.  Such tools 
often provide the user with their own scripting 
languages, but most of the times user can't go beyond 
the set of provided simulation tools. All these factors 
are negatively influencing the construction of 
extensive simulation models with a large number of 
system elements.  

As mentioned above the current software tools bring 
number of unresolved problems into the large model 
development process, therefore we suggest another 
approach and techniques. 

3.6 Software support as aim of speeding up model 
live cycle phases and increasing quality indicators 

Some of the phases of simulation model live cycle are 
quite time consuming, especially the design and 
implementation phase.  

The fact is that in the implementation phase a high 
potential for making errors exists. Our effort is to the 
most possible extent decrease the potential for making 
errors in the model development process and automate 
as much as possible some of the time consuming 
phases. One possibility to improve the model design 
efficiency would be to create an environment, in 
which all the phases of the model development are 
carried out. In this type of environment the model 
would have to be designed (by the GUI), implemented 
(where a conceptual model becomes both machine and 
human readable) and executed. On one hand this 
mentioned approach is advantageous, because it 
allows the modeler to carry out all the modeling 
phases in one compact environment. On the other 
hand, this approach brings some limitations.             



The programmer cannot directly interfere with the 
simulation model source code. This means, that the 
simulation model can be constructed only from 
components contained in the environment. When 
trying to build large and detailed models this factor is 
very limiting.  

Suggested solution is oriented to minimize unwanted 
effects coming along with realization of particular 
stages of simulation model development. Basic idea 
comes from a strong relation between the conceptual 
model and the implementation. 

 

 

 

Fig. 3  Linkage between agents, their internal logic 
(Petri nets, Network charts) and the executable 

methods written directly into the source codes by 
the GUID.  

We suggest that the conceptual model (the output 
from the design phase) is directly used for the 
simulation purposes. That means the conceptual 
model has to be both human and machine readable. 
The fact, that the conceptual model becomes machine 
readable greatly decreases the amount of the generated 
source codes, because most of the generated source 
codes would have been used to describe the basic 
model structure. The conceptual model should be 
exported in a binary format and the simulation kernel 
must be capable of loading and using this format for 
simulation purposes. 

To give the programmer virtually unlimited versatility 
in the simulation model enhancement, we had to solve 
the problem of interconnection of the exported binary 
structure and the programmed source codes. This was 
solved by giving every element of the simulation 
model (e.g. agent, message edge, assistant etc.) a 
unique identifier GUID (globally unique identifier), 
which corresponds to an execution method containing 
the source code of this element. By this mechanism 
(figure 3) we were able to create a hybrid system, 
where the simulation kernel is directly using the 
conceptual model which is interconnected with the 
simulation model source code. 

In application of this design, the term conceptual 
model got new enhanced meaning. Now it represents 
not only the simulation model structure and 
configuration, but it also represents an executable part 
of the simulation model. The simulation kernel is 
capable of using the binary format of the conceptual 

model without requiring the source codes of the 
conceptual model. In application of this approach, 
conceptual model becomes human readable and also 
readable and executable by the computer. As a result 
we have significant reduction of simulation model 
source codes, which indirectly increases the flexibility 
of the simulation model, and its robustness. This 
approach also greatly contributes to the implemen-
tation phase and reduces the error potential in model 
programming.  

This approach has a positive effect on various quality 
indicators. First of all, as mentioned earlier it increases 
the flexibility of the system, by reducing the amount of 
the source codes: Most of the source codes describing 
the model structure and model logic don't have to be 
generated at all. With lowering the amount of source 
codes used, we increased the robustness of the model, 
since the modeler is not allowed to access the model 
structures and therefore cannot accidently or on 
purpose change the behavior of the model. Since all 
the design and modeling is done in a graphical form, 
we increased the ease of use quality indicator. It's 
more natural for modelers to use graphical language to 
describe the model structures and reactive logic 
utilizing Petri nets and Network charts. Another 
positively influenced quality factor is the re-usability 
of the model or of its parts. This factor is very 
significant when trying to build generic simulation 
models.  

Our hybrid system with all the advantages of CASE 
tools give the model designer virtually unlimited 
space to enhance the model behavior by writing the 
source codes. Each component of the model has its 
execution method, which can be implemented in a 
standard development environment (e.g. Microsoft 
Visual Studio, Delphi, etc.). These execution methods 
are connected with the model structure using GUID, 
therefore there is no need to recreate these source 
codes. The only need is to configure the linkage 
methods, which is done semi-automatically with the 
help of built-in simple source code generator.  

4 Implementation example 

The previous section of the article describes the 
lifecycle of a simulation model and introduces our 
approach in improving the modeling process. In this 
section we will talk about the generic model builder 
software environment called ABAbuilder, which is 
based on our own agent architecture ABAsim (Agent 
Based Architecture of Simulation Models). More 
about this architecture can be found in [7].   

Next section briefly talks about generic simulation 
model Villon. This simulation model has been 
designed for making simulation models of a wide 
range of transportation service systems. 



4.1 ABAbuilder software environment 

In this section we will briefly discuss the features of 
the ABAbuilder software environment which proved 
its important role in conceptual modeling process. For 
designer it makes the designing process semi- 
automated, with a variety of functions for altering the 
model, such as changing the hierarchy of agents, 
testing different message models, etc. From the 
programmers perspective it speeds up the model 
implementation with utilizing the source code 
generator which is capable of generating the basic 
model structures. 

 

Fig. 4  Screen capture of the ABAbuilder         
software environment 

ABAbuilder is a software environment based on the 
ABAsim architecture and its principles. It supports 
several aspects of model development including 
system analysis, design of communication, and use of 
methodologies, prototyping and model maintenance. 
One of the greatest contributions of the architecture is 
the flexibility of model configuration. ABAbuilder is 
capable of creating large palette of alternative internal 
components, which can be used to construct the 
simulation scenario. The experimenter is allowed to 
change executive characteristics of each of the system 
agents by using different components with 
preprogrammed behavior and decision making 
algorithms.  

The similarity of control structures from the real world 
allows relatively easy design of control components of 
the simulation model using ABAbuilder software 
environment. A simulation model structure can be 
described by the hierarchy of system agents (figure 4). 
From the ABAbuilder point of view, not only agents, 
but also their internal components are considered as 
model building base.  

To be able to accomplish individual phases of the 
simulation model live cycle this environment had to 
be divided into three interacting modules: The visual 
environment displays the simulation model from 
different perspectives. Its main purpose is to display 
the agent hierarchy and internal components of each 
agent (Petri nets). It allows users to add new agents to 

the hierarchy, edit their internal components and 
define the message flow inside of the model. Petri Net 
editor is used to define the reactive logic of each 
agent. Users are allowed to look at all aspects of the 
hierarchy at once, or they can apply various sets of 
filters.  

The error localization module works continuously and 
it checks the model each time a change has been 
applied. It provides user with two kinds of messages: 
error messages and warnings. Errors messages appear 
when user tries to do something which is not allowed 
by the methodology of creating models based on the 
ABAsim architecture. Warnings inform users of 
issues, that are not critical for the model but might be 
dangerous during the runtime.   

When the decision is made by the user and the model 
is ready for deployment the source code generator 
module comes into use. This module first of all creates 
so called execution methods of model components. 
These methods are empty and the programmer is 
capable of implementing custom model behavior. In 
the next step it generates the method which 
interconnects these execution methods with model 
elements by the GUID. Libraries containing the 
simulation kernel, which allow compiling a standalone 
application, are provided as a part of the ABAbuilder 
software environment. These libraries are actually  
part of the simulation project. 

Creating complex simulation models in the ABAsim 
architecture such as the model of a container terminal 
or a marshalling yard would be very hard to 
accomplish, if not almost impossible without 
existence of this software environment. 

4.2 Generic simulation model Villon 

As a bright example of architecture possibilities and 
flexibility, generic simulation model Villon [8] can be 
mentioned. Villon is detailed microscopic simulation 
model of logistic junction operation with predominant 
transportation processes. The junction is understood to 
be e.g. railway marshalling yard, railway station for 
passenger transport, factory sidings, airports, container 
terminals, etc. Utilizing the ABAsim architecture, 
Petri nets and Network charts Villon tool is flexible 
enough to model different means of transportation 
considering their specific attributes.  

Using Villon one can build simulation models of 
railway marshaling yards with only railway traffic, but 
also combined models, with inter-modal operation. 
Villon was successfully used in commercial 
environment to provide services for many clients, 
among them are national railway companies from 
Germany, Austria and Switzerland, private companies 
BASF, Volkswagen and many others. 



5 Conclusion 

Given the current state of the art information 
technologies and simulation methods, the important 
decisions making process in the management of 
complex service systems should not be taken without 
the previous modeling of the consequences by the 
means of discrete simulation. Costs associated with 
the simulation study represent only a fraction of the 
cost of the damage that could be caused by bad 
decision applied in reality.  

In developing extensive models of complex 
transportation service system systems it is necessary 
to choose the right methods, that allow modelers  to 
respect the structure of the real system and allows 
them to create a flexible, open and easily maintainable 
simulation models. The fact remains that without 
appropriate architecture e.g. ABAsim and supporting 
software environment e.g. ABAbuilder the task of 
detailed modeling becomes very complicated, in some 
cases might be even unmanageable.  The solutions 
presented in this article unlike from the past allows us 
to create much larger models and models meeting high 
quality requirements. 
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