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Abstract  

In this paper, an implementation of a simulator for spiking neural networks and 

learning algorithm using genetic evolution is described. We have implemented 

two neural models (simplified Spike Response Model and Integrate and Fire 

model) and two learning algorithms – SpikeProp (its original version modifying 

only weights and an enhancement for changing all network variables – weights, 

delays, time constants and thresholds) and a simple genetic learning algorithm 

(presented in this paper). This learning algorithm is easy to understand and does 

not require any special network topology like feed-forward networks and back-

propagation algorithms or thorough investigation of network architecture. It is 

based on an assumption that small changes in network variables have a small 

impact on the output and big changes have a big impact, thus calculating a 

difference between a desired output and a real output and mutating individuals 

according to a size of this difference we can expect a population to converge. 

We verified this approach on frequently used benchmarks. 
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1 Introduction 

Spiking neural networks [5] are labeled as third 

generation networks. A reason for this is a biological 

more realistic model, where time factor is involved. 

Simulation of spiking neural networks is more 

complex than with classic neural networks due to a 

higher count of network variables and more complex 

timing. Because of a failure to find a proper simulator 

for educational and experimental purposes, we 

decided to create our own simulator for studying 

spiking networks behavior and properties. 

In this paper, we present our spiking neural network 

simulator containing our genetic algorithm for 

learning spiking networks involving an adaptive 

mutation. The simulator supports simplified Spike 

Response Model and Integrate-and-fire model. 

Along the implementation of the simulator we 

wondered if it is possible to solve the learning 

problem for spiking neural networks with genetic 

algorithms (instead of using some kind of back-

propagation technique). This was due to the fact that 

we are convinced that genetic algorithms are more 

powerful for problems with many variables than 

gradient algorithms (like back-propagation). 

Overview of spiking neural networks is in Section 2. It 

describes neuron models as they were implemented in 

the simulator. 

Section 3 describes SpikeProp (back-propagation 

based algorithm), which was used for comparison to 

our genetic algorithm in presented experiments. 

Section 4 describes our proposed genetic algorithm in 

detail. The simulator which implements this algorithm 

is presented in Section 5. Simulation results are 

described in Section 6.  

2 Spiking neural networks 

A main difference between classic ANNs and SNNs is 

that values are not carried directly along connections, 

but by spikes propagated along synapses between 

neurons. It allows an arbitrary spatiotemporal coding, 

for example rate coding, linear temporal coding, 

population coding, rank order coding etc. 

There are several spiking neuron models differing in 

complexity and a mathematical description. Models 

we used in the simulator are SRM (Spike Response 

Model) and Integrate-and-fire model.  

2.1 Spike Response Model 

SRM implemented in simulator describes an internal 

potential of a neuron like: 
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First sum goes over all input synapses to the neuron, 

second one stands for all spikes coming in across the 

synapse. u(t) represents the neuron potential, ws a 

weight of a synapse, t a current time and tp a time 

when spike arrived to the neuron,  s a time constant 

for a particular synapse. 

A simulation of a network with SRM model is made 

in a clock-driven fashion, i.e. a network is simulated 

in small time steps. 

 

Fig. 1 Spike Response Model (an effect of a spike to a 

neuron's potential) 

 

Fig. 2 Integrate-and-fire model (an effect of a spike to 

a neuron's potential) 

These figures depict shapes for both models. A 

concrete shape and values are related to constants, so 

these figures are only illustrational. 

2.2 Integrate-and-fire model 

The model of spiking neuron is more complex than 

SRM model. It can be simulated in an event-driven 

fashion, thus it runs faster than clock-driven 

simulations. 

                  (2) 

Differential equation (2) describes the Integrate-and-

fire model [4]. V represents an internal neuron’s 

potential, VRest a resting potential, J a synaptic current, 

R a neuron’s resistance and τ a neuron’s time constant. 

Different variable names than in SRM are used 

because of a different literature source of this neuron 

model. 

The synaptic current J is calculated as a sum of 

rectangular shaped pulses (with a synapse’s weight as 

a height of this pulse).  
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3 SpikeProp 

SpikeProp is a back-propagation learning mechanism 

derived for spiking neural networks introduced in [1].  

In classic ANNs, an error of the network is calculated 

as a difference between an actual and a desired output. 

For SNNs, back-propagation algorithm was derived 

for first time spike coding (e.g. linear temporal 

coding) and the error is calculated as a difference 

between an actual and a desired output spike time. 
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In each iteration parameters (weights only or all 

neuron’/synapses’ parameters) are modified by the 

delta rule as follows: 

         

  

   
  (4) 

where ∆pi is a change of a i-th parameter, ηp is a 

learning rate for specific parameter class and ∂E/∂pi is 

a partial derivative of E by parameter pi.  

SpikeProp iterates until the error falls below 

predefined threshold, a maximum number of iterations 

is reached or some neuron stops firing (in this case it 

is not possible to calculate the error). 

Because of nature spiking networks, some problems, 

unseen in classical ANNs, can pop up – e.g. because 

weights are being altered by difference between 

output spike times and desired times, one cannot 

compute this difference anymore, when neuron stops 

firing. 

4 Genetic learning algorithm 

A genetic algorithm (GA) is a strong optimization 

method. It involves similar processes known from 

nature – evolution of a population, selection of best 

individuals and their mutation or crossover. An 

advantage of this approach is a lack of need to study a 

concrete problem thoroughly – e.g. for a feed-forward 

network, there is no need to study and to implement 

some kind of a back-propagation technique. 

The proposed genetic algorithm evolves a population 

of individuals. Each individual is represented by one 

spiking neural network (i.e. there is no conversion to 

binary format whatsoever). In each iteration, worst 

individuals which are removed from population are 

replaced by mutated survivors. Generation of new 

individuals is made by mutation of parameters, no 

crossover is performed. Individuals are evaluated 

according to an error of the network, calculated as 

follows: 
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where E is the error, P is a set of patterns presented to 

the network (e.g. 4 patterns for the XOR problem),   
  

is a real network output and   
  is a desired output. 

A key assumption for our algorithm is that it’s more 

plausible to make greater changes to individuals that 

are farther from the ideal solution – a random value 

from range [-0.5;0.5] is multiplied by an error of the 

individual and some constant specific to the 

parameter. These constants were empirically set based 

by a few experiments (if the constant is a zero, the 

parameter remains unchanged, if it is too high, only 

bad individuals are produced, a good value is 

somewhere inside this interval). Constants used were 

10
5
 for weights, 10

2
 for delays, 10 for time constants 

and 10
2
 for neurons’ thresholds. 

A following equation represents an operation for each 

parameter (p) for each individual in the population. A 

rnd function generates a random number in the 

interval 0 and 1 and Pp represents a probability that the 

parameter will be mutated. 

    {
                       

           
 (6) 

A fitness value can be expressed as a negative error, 

so an individual with the best fitness will have a zero 

error value. 

A pseudo-code illustrating how the implemented 

genetic algorithm works follows. 

1. Initialize initial population 

2. Calculate fitness values for all individuals 

3. Remove N worst individuals 

4. Generate N new individuals by duplicating and 

mutating survivors 

5. Calculate fitness values for all individuals 

6. If the error of the best individual didn’t fall below 

some threshold, go to step 3. 

7. Take the best individual as a solution 

Fig. 7 Pseudo-code illustrating the implemented 

genetic algorithm 

We can also look at this learning algorithm as at some 

genetic variation of a gradient descending algorithm. 

In the first step, a population is initialized somewhere 

in the variable space. Better individuals survive to a 

next population, worse ones are replaced. Because 

each offspring is generated from some relative good 

individual (a parent is uniformly selected from N best 

individuals in the population) and a size of a mutation 

is related to an error, population moves closer and 

closer to a local/global minimum. 



5 Simulator 

We implemented a simulator for educational and 

experimental purposes, because we didn’t find proper 

one for our needs. Although we found pure simulators 

for spiking neural networks, we didn’t find some easy-

to-use and sufficiently simple simulator with learning 

algorithms suitable for spiking neural network 

exploration and spiking activity visualization. 

Our simulator implements Spike Response Model and 

Integrate-and-fire model (see Section 2) and provides 

visualization of running spikes and changing neuron 

potentials in time. It is based on Java platform because 

of portability and because Java is well spread. 

5.1 Simulation types 

The simulator implements two known approaches for 

simulation – a clock-driven and an event-driven. The 

clock-driven simulation calculates all network 

variables at each step of the simulation and checks 

whether something important happened. This logic is 

easy to understand on the one hand on the other hand 

it involves a lot of computations. Simplified Spike 

Response Model is computed in our simulator in this 

fashion, i.e. at each time step all neuron potentials are 

computed and checked for crossing thresholds. If any 

neuron’s potential crosses its threshold, it is set to zero 

and spikes are sent to output synapses of that neuron. 

The event-driven approach is more difficult than 

clock-driven, but brings some advantages. Because of 

its nature, only important events in the network are 

simulated thus unnecessary computations are 

eliminated. Therefore, computation complexity is 

related to what happens in the network (how many 

spikes are emitted and how often) in opposite to 

clock-driven simulation where complexity is related to 

a structure of the network and duration of a simulation 

(for each time step, all neuron potentials are 

computed). We use this approach for Integrate-and-

fire model, because it’s described using a differential 

equation, which can be used for determining if and 

when a neuron’s potential crosses a threshold. 

5.2 Simulator interface 

The simulator has a graphical interface for visualizing 

network architectures and activity (running spikes) in 

a simulated network for educational purposes. 

Fig. 4 shows a graphical user interface of the 

simulator with a network for the XOR problem 

depicted as an example.  

Using the graphical interface user can create his/her 

own experiments – besides predefined experiments 

Ideal solution

Error of an indivudal

Randomly generated population Survivors New generated individuals

 

Fig. 3 Genetic evolution in the variable space. This picture illustrates initializing a first generation (black 

circles), selecting the best individuals (blue crosses) and creating new individuals (red stars) closer to the 

optimal solution. 



thoroughly described later. This option is currently 

under development, but so far, it is possible to select 

from an arbitrary network (n neurons is placed and 

user manually creates synapses between them) or a 

feed-forward network (whole network is generated 

according to input parameters). Input and output data 

are read from a XML file. Currently, only encoding 

with first spike times is supported.  A problem with 

SNNs is that network can work with any possible 

encoding on its input and output – spikes could be 

interpreted in any way. The most suitable solution for 

this would be probably a special algorithm for each 

problem, but we focus on the basics so far. 

6 Experiments 

Simulator has been tested on standard XOR 

benchmark and the Iris [6]. Architectures and data for 

these problems are predefined, so user only selects an 

experiment and runs it. 

6.1 XOR problem 

A first experiment was to train a network for a XOR 

problem (because it’s a simple, but non-linearly 

separable classification problem) as it was made in 

[1]. Architecture is 3-5-1 (number of neurons in input, 

hidden and output layer) with 16 synapses between 

each pair of neurons. Each synapse has a fixed delay 

varying from 1 to 16 milliseconds. A reason for this 

architecture is a fact that only weights are trained, not 

delays or time constants, and there have to be a way 

how the learning process can ―pick‖ a proper delay 

(although one can expect, according to results, the 

trained weight vector does not look like ―1 from N‖). 

A next step in this experiment involves learning all 

synapses’ and neuron’ parameters, i.e. delays, time 

constants, weights and thresholds, as it was made in 

[2]. An advantage of this approach is a less complex 

structure and therefore faster simulation. 

Architecture for this test is also 3-5-1, but there are 

only two synapses between each pair of neurons. 

The XOR input patterns were encoded using linear 

temporal coding, coding 1 at t=0 ms and 0 at t=6 ms. 

One spike was always sent at t=0 as a reference spike. 

Decoding a network’s output is similar – 1 is 

represented by an output spike time at t=10 and 0 at 

t=16. 

 

Fig. 5 Network architecture for the XOR problem (3 

input neurons, 5 hidden neurons, 1 output neuron) 

Networks were trained until an error fell under 2.0 

milliseconds. The error for a network was calculated 

according to the equation (3). 

For the architecture with 16 synapses between each 

pair of neurons, several weights initializations for 

back-propagation were tried and the best one was to 

initialize all weights to a value of 6.0 (neurons’ 

thresholds 50.0). Other initializations were: different 

constant values, random values between 1 and 10 and 

 

Fig. 4 User interface of our spiking neural network simulator (a network with 3-5-1 architecture for the 

XOR problem depicted) 



random values between 1 and 10, but always same 

weights for one pair of neurons.  

Tab. 1 Different weight initialization methods for 

XOR 

Weight initialization 

method 

XOR 3-5-1, 16 synapses, 

back-propagation 

Constant value – 4 144 for 100,00% 

Constant value – 5 117 for 100,00% 

Constant value – 6 103 for 100,00% 

Constant value – 7 144 for 100,00% 

Constant value – 8 186 for 100,00% 

Random value between 1 

and 10, but all same for 

one connection 

198 for 92,00% 

Random value between 1 

and 10 

131 for 100,00% 

For the second architecture with two synapses per one 

connection, constant value of 0.5 was used (neurons’ 

threshold was 1.0). 

In the table (Tab. 2) are written down results for this 

problem. Each combination (structure/learning 

method) was observed for two values – how many 

epochs were needed for the error to fall under a 

specified value and also how many configurations 

(different set of weights in a starting configuration or 

different path of evolution) the network converged for. 

Tab. 2 Results for the XOR problem 

 Back-

propagation 

Genetics 

(SRM) 

Genetics 

(IF) 

XOR (3-5-

1, 16 

synapses) 

103 for 100 

% 

189 for 

60,00% 

197 for 70 

% 

XOR (3-5-

1, 2 

synapses) 

109 for 

88,00% 

125 for 

100,00% 

92 for 

90,00% 

The results showed that a genetic algorithm is a 

suitable way for training a network on a simple 

classification non-linearly separable problem 

(independently on a neuron model). 

6.2 Iris benchmark 

The Iris dataset consists of 150 cases divided into 

three classes (50 instances for each class) which are 

not linearly separable. There are 4 input variables 

describing each instance and its correct classification. 

These input variables were encoded by 12 neurons for 

each one of them (thus 48 neurons in total) using 

population encoding described in [1]. 

 

Fig. 6 Population coding illustration - we are encoding 

value "a" by 8 neurons (figure taken from [1]). 

Population coding is used for a greater resolution than 

in a simple linear temporal coding. This type of 

coding is more biological plausible, because neurons 

can distinguish spikes only to certain limits (according 

to [1], cortical times are inherently noisy and a 

resolution under 1-2ms is not possible). Using more 

neurons to encode one value it is possible to resolve 

values under this resolution. 

 

Fig. 7 Network architecture for the Iris problem (8 

hidden neurons in two layers, 3 output neurons for 1:N 

coding) 

For this benchmark, the experiment was ran 10 times 

and always learned for 300 epochs. Data was 

separated into two sets, training (70% from the 

original set) and testing (30%). 

Output encoding for this benchmark was 1:N, i.e. first 

firing output neuron is a winner and points out a 

predicted class. The error is calculated as a square of 

difference between an ideal firing time and actual 

firing time, where the ideal firing time is a firing time 

of a neuron representing a correct class. Additionally, 

the difference has to be bigger than some minimum 

value (because of noise in synapses and neurons). 

Tab. 3 Results for the Iris problem 

Results after 

300 epochs 

Training set Testing set 

Test 1 96,23% 90,91% 

Test 2 98,10% 91,11% 

Test 3 95,10% 79,17% 

Test 4 97,32% 92,11% 



Test 5 92,52% 86,05% 

Test 6 97,09% 97,87% 

Test 7 92,08% 95,92% 

Test 8 97,22% 97,62% 

Test 9 94,00% 88,00% 

Test 10 97,27% 87,50% 

According to results, the network provided good 

prediction and proved it can be learned for this type of 

problem with a population coding using our genetic 

algorithm. 

7 Conclusions 

We have successfully created a simulator for 

experimental purposes and presented a simple genetic 

learning algorithm for spiking neural networks. The 

simulator allows running experiments, displaying 

network architecture and studying spiking networks. 

For learning we have implemented SpikeProp [1] with 

enhancements [2] and the genetic algorithm presented 

in this paper. 

The proposed genetic algorithm has been tested on 

standard benchmark tests and it showed we were 

capable to learn spiking neural network for these 

datasets. Experiments showed we can use this 

approach with both used neuron models (SRM and IF) 

and without any specific knowledge of the network 

structure. 
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