
DEVELOPING SIMULATION MODELS USING
STATECHART METHODOLOGY

Michael Gyimesi1, Patrick Einzinger2, Felix Breitenecker1

1 Technical University of Vienna,
 1040 Vienna, Wiedner Hauptstraße 8-10, Austria

2 dwh Simulation Services,
1070 Vienna, Neustiftgasse 57-59, Austria

michael.gyimesi@tuwien.ac.at

Abstract

While object oriented programming became the quasi standard of software
development, the object-oriented modelling paradigm has emerged as very
useful for modelling of simulation models and object-oriented techniques have
been introduced in simulation modelling. Especially statechart diagrams as part
of the Unified Modelling Language (UML) have shown to be really useful for
discrete event simulation modelling.
David Harel of the Weizmann Institute of Science introduced statechart
diagrams in the 1980s. He extended the principles of conventional state-
transition-diagram formalism, basically drawing states a system can be in and
transitions from one state to another, by the concepts of hierarchy, concurrency
and communication.
Thereby statechart modelling became a powerful and at the same time easy to
apply method to model arbitrary systems. The first version of statecharts was
applicable for just discrete systems, but in the meantime a real time compliant
version as part of the UML for real time (UML-RT) - standard, was developed.
While the modelling process is flexible and easy to communicate, the number of
simulation software that supports statechart-modelling is increasing. Therefore
we introduce statechart methodology as a general method for modelling
simulation models and emphasise the usefulness in agent based modelling.

Keywords: Discrete Event Simulation, Hybrid simulation, Statecharts, Object oriented
Modelling, UML

Presenting Author’s biography
Michael Gyimesi studied technical mathematics at the University of
Technology in Vienna and received his PhD in 2005. After that he
focused on health service related models and data analysis techniques.
His current research interests in modelling and simulation include health
services research, object oriented modelling and multi-scale modelling.

1 Introduction
David Harel of the Weizmann Institute of Science
introduced the statechart modelling formalism in the
1980s. He extended the conventional state-transition-
diagram formalism by the concepts of hierarchy,
concurrency and communication [1,2,3]. In the 1990s
statecharts were included into the Unified Modeling
Language (UML), a set of graphical modelling
guidelines and the de facto modelling standard in
object oriented programming [4,5].

Meanwhile the object oriented modelling paradigm as
method for modelling of systems has emerged as very
useful for modelling of simulation models and
different simulation software exists that uses object
oriented modelling and the enhancements of UML. In
particular statechart diagrams and activity diagrams
emerged as very useful for simulation modelling
[6,7,8].

Therefore we will discuss statechart-modelling
methodology from a simulation's point of view. We
give a short introduction in principles of statechart
modelling in section 2 following in section 3 with
some remarks on simulation paradigms and where
statecharts can be seen in that context.

In section 4 we give a more realistic example in
showing the easy use of system modelling with
statecharts and give some concluding remarks in
section 5.

2 Principles of statechart modelling
Statechart modelling includes different concepts,
namely “regions”, “states”, “transitions”,
“pseudostates” and “branches”.

• Regions are the areas where states,
transitions, pseudostates and connectors are
placed in. Regions can be nested
hierarchically or can represent concurrent
state spaces of an object.

• States are the conditions that an object or a
system whose behaviour is described by
statecharts can be in and are denoted by
rounded rectangles. Inside a state, actions can
take place as “entry action” or “exit action”.
Actions are usually commands respectively
programming code depending on the actual
modelling environment.

• Transitions define the possible switch from
one state to another and are denoted by a
unidirected arrow connecting two states. A
transition becomes active, when an event
inside the system occurs which is connected
to the transition’s so called guard.

• Pseudostates are statechart objects that are
neither states nor transitions and represent
special semantics to be applied in a given

situation. There are different types of
pseudostates:

_ initial state

_ final state

_ shallow history state

_ deep history state

• Branches are statechart objects that connect
multiple transition segments. There are two
branches: “fork” for outgoing transitions and
“join” for incoming transitions.

Figure 1 shows a basic statechart with one region, an
initial state (each region needs an initial state as
starting point), two states “idle” and “busy” and two
transitions to model the possible switches from idle to
busy and vice versa. The transition from the initial
state to idle is taken immediately.

Fig. 1 Basic State diagram

A statechart comprises one or more regions. As the
top-level statechart diagram is also a region, there
exists at least one region in every statechart.
Additionally regions can be created within states,
building a nested hierarchy or multiple regions can be
placed independently inside one statechart (or one
state), thereby building “orthogonal” state spaces. This
state spaces act concurrently and change of states
inside one region executes independently from state
changes in orthogonal regions.

Orthogonal regions can communicate with each other
via broadcasting and receiving events. Every region
can create an event as a result of a transition that is
consumed by another orthogonal region. For every
transition inside a receiving region a guard may be
used to test if another (sending) region is in a certain
state before a transition in the receiving region fires.

Figure 2 shows a small statechart with two orthogonal
regions - one region includes the states B and D, the
second region just the state C. The moment the
statechart becomes active, the system switches in
states B and C immediately. The transitions from B to
D (and back) respectively from C to a final state are
taken independently from each other.

Fig. 2 State diagram with orthogonal regions

The second really important enhancement by Harel
was the introduction of hierarchy, represented through
nested regions, thereby reducing the rapidly growing
complexity of big “flat” models significantly.

Figure 3 shows a statechart with two nested regions.
While at top level the statechart starts with immediate
transition in state A, the region inside A switches into
state B. Depending on the defined transitions or
guards, the statechart switches into state C or state D.
If state C is active, it can be important that C is not a
part of the region inside A.

Fig. 3 State diagram with nested regions

3 Statechart Modelling and Simulation
3.1 Statecharts for discrete event simulation

Building models includes always a process of
abstraction of reality. This holds for every type of
model building including statistical models, physical
models and of course simulation models. Which
modelling technique somebody chooses depends on
the purpose of abstraction respectively the purpose of
simulation.

Although there exist basically two more or less
distinct application areas in the simulation domain, the

discrete event simulation (DES) area and the
continuous simulation area, most real systems have a
certain amount of discrete behaviour from a
simulation's point of view. Therefore most simulation
models for real systems use DES or at least some
hybrid principles as hybrid means a combination of
both DES and continuous simulation (e.g. differential
equations).

Inside the DES domain people distinguish between
event oriented and process oriented paradigm.
Although the mathematical fundamentals of DES
come from the event-oriented worldview, most
simulation software packages use a process-oriented
approach. While events are the moments when the
system state changes, processes represent the sum of
activities that refer to a specific object. The latter may
be a more natural representation of a real system,
enabling the modeller to concentrate more on spatial
aspects and communicate the model via a graphical
representation that includes sources, sinks, processing
nodes and connecting edges.

Pure modelling engineers usually neglect the need of
communicating their model, but when communication
between modeller and specialists in the field of
research becomes important, object oriented
modelling shows to have a real point. Similar to the
emergence of object-oriented programming, the
arguably accepted programming standard in recent
years, the simulation community adopted the
principles of object oriented abstraction and
technologies in recent years. One of these useful
techniques are statechart diagrams as part of the
Unified Modeling Language (UML), which was
introduced by Rumbaugh, Booch and Jacobson in the
nineties of the last century. They have shown as a
powerful modeling approach for discrete event
systems.

From the event-oriented viewpoint every activation of
a statechart transition schedules an event. States
restrict the set of possible events that might be
scheduled next, because only the firing conditions of
outgoing transitions of the active state (or states in the
case of orthogonal regions) of the system are checked.
Therefore single events could replace a statechart if
there was one event for every transition and the
condition for an event incorporated both the condition
of the transition it corresponds too and a condition that
secures that the event is just scheduled if the statechart
was in the right state. However statecharts are
preferable because they offer structure that allows
modelling the same system in a very intuitive way that
is much less error-prone.

3.2 Statecharts for hybrid simulation

The first version of statecharts was applicable just for
discrete systems. But in the meantime a modelling
standard for real time applications, UML – RT, was
developed, that integrates discrete system's behaviour
with real time concepts. And as part of this standard, a

newer version of statechart diagrams was developed,
which is particularly suitable for hybrid modelling.

An example of a hybrid simulation statecharts are
exceptionally suitable for is the “Bouncing Ball” [9].
In models like this the states of the system correspond
to different modes of execution. In each of these
modes a continuous part (usually a system of
differential equations) governs the behaviour of the
system. Transitions between the states are often
triggered by the state of the differential equation
system (for example by zero crossings of one of the
state variables) of the active state. For this type of
hybrid systems the statechart formalism provides a
natural representation.

3.3 Software using statechart methodology

In this section we will introduce some simulation
software with statechart technology with no claim to
be complete:

• AnyLogic: AnyLogic is multimethod
simulation software, developed by XJ
Technologies that covers basically three
different modelling approaches: system
dynamics, discrete event simulation, agent
base modelling and any combination of these
approaches in one model. That makes it a
good choice for all hybrid modelling [10].

• MATLAB Stateflow: Stateflow is a
simulation tool for event-driven systems,
developed by MathWorks and is integrated
with MATLAB and Simulink [11].

• LabView: LabView is a platform and
development environment for a visual
programming language developed by
National Instruments and is platform
independent [12].

• MOSILAB: The generic simulation tool
MOSILAB is developed by a consortium of
different Fraunhofer institutes in Germany
and is based on differential algebraic
equations [13,14].

Depending on different needs for simulation models,
especially integration with other software, one can
find some other software packages that use statechart
methodology as well.

4 Example for statechart modelling
To explain how to model with statechart diagrams, we
introduce the following example. It represents the
artificial situation (or “system”), where a working
person becomes sick – imagine influenza – and
therefore has to go to the general practitioner to get a
permit for sick leave, stays at home for duration of the
infection and returns to work after he has recovered.
There are of course different alternatives to model

such a system, but the showcase will show a lot of
possibilities the statechart formalism offers (Figure 4).

Fig. 4 State diagram with orthogonal regions

The system respectively person at the beginning is
healthy but susceptible and working as usual. As the
two properties of the person are not necessarily
depending on each other, we represent this in a
statechart with two independent, orthogonal regions.
We will not focus on how the person gets infected but
if this happens, the left region switches from state
susceptible to state sick_infectious. As we choose an
infection with a latency to show symptoms, the
individual will be in state no_symptoms first, but at
the same time also in state sick_infectous. The right
region switches from state at_work to state sick_leave
not before the person shows symptoms. A guard for
the transition from state at_work to state sick_leave
listening to the corresponding switches from state
no_symptoms to state symptoms acts as a
synchronising mechanism for both regions.

In the showcase health system a person needs a permit
for sick leave and has to go to a general practitioner.
Consequently the first state inside the state sick_leave
is the state GP_visit. After that the person will stay at
home as long as the infection endures, showing
symptoms of different grade. Let us imagine that the
person recovers after a fixed time period. So if that
happens in the statechart, a guard in the right region
switches from state at_home to state GP_visit,
modelling a person's duty to end a sick leave permit.
After that the person switches to the state at_work and
because the person is immunised for a while, he or she
remains in the state recovered for that period and
cannot be infected before he or she switches to state
susceptible.

As this statechart model is not a unique representation
of the system, alternatives are possible or even
necessary for an expert in the field. Therefore the
model could look like in figure 5.

Fig. 5 Alternative example model

The two visits by the general practitioner are
decomposed in two different states, which can make
sense depending on the purpose of the model.

When we try to model the spread of an infectious
disease, we could go for an agent based simulation
model, where every agent acts as an individual with
the illustrated behaviour. The only additional thing to
model the spread of an infection would be the
inclusion of an infection mechanism occurring when
susceptible and infectious people meet.

Fig. 6: State diagram with infection mechanism

Just to show how easy this could be represented in a
statechart, we show one (of many possible) solution to
implement this in figure 6. If agent A and agent B
meet with A in state susceptible and B in state
sick_infectious, a transition inside B's sick_infectious
state (independent, if there are symptoms or not, and
without changing B's state) triggers the switch from
state susceptible to state sick_infectious for agent A,
thereby acting like independent orthogonal regions
inside the system of the two agents.

5 Conclusion
Statecharts were introduced as an enhancement of
traditional state machine modelling and improved
state machines by the addition of concepts for multiple
regions, hierarchical states and communication
broadcasting. These small additions made statechart
modelling extremely powerful and an even newer
enhancement introduced statecharts for real time
modelling. Thereby statechart diagrams provide a
flexible, while not unique but descriptive and easy to
communicate way to model systems with only a
handful of syntactical rules.

6 References
[1] D. Harel, "Statecharts: A visual Formalism for

complex systems", The Science of Computer
Programming, 8, pp.231-274. 1985

[2] Harel, D. (1988). On Visual Formalisms.
Communications of the ACM 31, 5. 514-530.
May 1988

[3] P. Ward and S. Mellor, Structured Development
for Real-time Systems, Prentice Hall pp.86 & 302.
1985

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The
Unified Modeling Language User Guide, Addison
Wesley, 1999.

[5] Object Management Group. Omg unified
modeling language specification, version 1.5.
http://www.omg.org/cgi-bin/doc?formal/03-03-
01. 2003

[6] Coleman, D., F. Hayes, S. Bear (1992).
Introducing Objectcharts or How to Use State-
charts in Object-Oriented Design. IEEE
Transactions on Software Engineering 18, 1, 9-18.
1992

[7] Rubin, K.S., A. Goldberg (1992). Object Behavior
Analysis. Communications of the ACM 35, 2, 48-
62. 1992

[8] B.P. Douglass , "UML Statechar ts" ,
http://www.embedded.com/1999/9901/9901feat1.
htm. 1999

[9] R. Karim, P. Bauer, B. Heinzl, M. Rössler, G.
Schneckenreither, A. Körner, K. Breitenecker
(2010). Hybrid State Chart Modelling for
Nonlinear Bouncing Ball Dynamics. Proceedings
Eurosim. 2010

[10] A n y L o g i c b y X J t e c h n o l o g i e s .
http://www.xjtek.com/

[11] Matlab and Stateflow by MathWorks.
http://www.mathworks.com.

[12] LabVIEW by Nat ional Ins t ruments .
http://www.ni.com/labview/statechart.htm

[13] Nytsch-Geusen, C. et. al., ”Advanced modeling
and simulation techniques in MOSILAB: A
system development case study”, Proceedings of
the 5th International Modelica Conference,
Arsenal Research Wien, 2006.

[14] "Modelling Structural Dynamic Systems:
Standard Modelica vs. Mosilab Statecharts";
"Proceedings MATHMOD 09 Vienna - Full
Papers CD Volume". 2009

