
ROAD MESH MODELLING USING THE
SPATIOTEMPORAL CLUSTERIZATION

Rudolf Marek, Miroslav Skrbek

Czech Technical University in Prague,
Faculty of Electrical Engineering,

Department of Computer Science and Engineering
Karlovo namesti 13

121 35 Prague, Czech Republic

marekr2@fel.cvut.cz(Rudolf Marek)

Abstract

The GPS navigation is widely used aid for travelers. However, good navigation
depends on good maps, which are sometimes hard to get. In this paper we ex-
plore a method to model a road mesh using self-organizing spatiotemporal data
clustering of collected GPS data. The resulting road mesh model is obtained from
simulated self organizing neural network, which clusters the individual data vec-
tors and infers the time dependencies between the clusters. This allows to detect
one way roads, or slow traffic automatically. To achive this goal we model the
road mesh with the Temporal Hebbian Self-organizing map (THSOM). This pa-
per presents a novel training method for the simulated THSOM neural network,
which reduces training period and improves model the convergence of original
THSOM neural network. The road mesh model is obtained from real GPS data as
well as from simulated data set.

Keywords: Neural Networks, Self-Organizing Maps, Computational Intelligence

Presenting Author’s Biography
Rudolf Marek is a postgraduate student and researcher at the Department

of Computer Science and Engineering. He got his Master’s degree in Elec-
tronics and Computer Science and Engineering from Faculty of Electrical
Engineering Czech Technical University in Prague in 2006. His research
is focused on hardware acceleration of computational intelligence algo-
rithms.



Fig. 1 THSOM network architecture.

1 Introduction

The GPS car navigation systems are quite common ac-
cessory for travelers, however the navigation is as good
as the map provided by the GPS system vendor. In this
paper, we model a road mesh from a simulated data set
and also from raw GPS data recorded periodically dur-
ing a car ride. The model is constructed by means of
self organization which arises during the simulation of
the Temporal Hebbian Self-organizing Map (THSOM)
[1] neural network.

Unlike classic SOM [2], THSOM contains spatial and
temporal maps, extending the clustering to space and
time. The THSOM architecture consists of single layer
of hybrid neurons as depicted in Fig. 1. Neurons of
this layer are fully connected to the input vector of di-
mension d, connections make up the spatial map. The
neurons are connected to each other in the grid using
recurrent temporal synapses (temporal map). Hybrid
neurons contain two types of similarity measures, Eu-
clidean metric for measuring similarities in the input
spatial space and the scalar product for measuring sim-
ilarities in the temporal space. The activation (output)
of a neuron is defined in [3] is as follows:

yt+1
i = γ

1−

√∑D
j=1(x

t
j − wt

ij)
2

D

 (1)

+ (1− γ)
∑n

k=1(y
t
km

t
ik)

n
(2)

where yt+1
i is activation (output) of i-th neuron in time

t+1 (next time step), D is a dimension of input vector,
xtj is input of j-th vector in time t, wt

ij is the spatial
weight for j-th input in time t, ytk is output of k-th neu-
ron in time t, mt

ik is temporal weights for k-th neuron
in time t (from neuron k to neuron i) and n is number
of of neurons in network.

For γ → 1, the THSOM reduces to SOM network. For
γ → 0 only prediction is done based on the temporal
weights.

Fig. 2 Original THSOM algorithm after 8, 27, 100 (first
row), 210, 400, 999 (second row) epochs. At the begin-
ning convergence is poor and the algorithm seems not
to fit and follow the data. After 200 epochs the tempo-
ral map starts to fit the roads well and data vectors begin
to get covered, the spatial map starts to cover most of
the data vectors. After epoch 500, oscillations emerges
which tries to refit some neurons in roundabout. The
spatial and temporal map gets only minor adjustments

2 Training algorithm
The original training algorithm of the THSOM is ap-
plied individually to each input pattern.

For each data input in epoch:

• Find BMU

• Update spatial weights according to classical Ko-
honen SOM training rule

• Update the temporal weights

The spatial weights are updated using a SOM (Koho-
nen’s Self-organizing Map) rules. The weights are up-
dated in order to move the neuron in the space closer to
the input vector. Temporal weights use modified Heb-
bian training rule according to the Eq. (3).

We propose new training algorithm which changes the
view to the data. Instead of modifing the network state
after each input, the data is presented to the network in
a batches, similarly to BatchSOM[4]. The spatial and
temporal training is separated. This new algorithm is
referenced as BatchTHSOM in further text.

For each epoch:

• Apply the BatchSOM[4] training algorithm on
data batch (yt+1

i computed with γ → 1)

• Compute BMUs (yt+1
i computed with γ → 0.5)

for individual vectors, if old and new BMU differs
then update the temporal weights

The first step, well-known BatchSOM algorithm is ap-
plied to spatial map only. The γ → 1 reduces the net-
work to the SOM. Second step, which is used to train



the temporal map using Hebbian training combines in-
fluence of both maps γ → 0.5.

The rules for the temporal weights updates are follow-
ing:

mt+1
bk =


min(max(mt

bk + α(1−mt
bk + β),Kl),Kh),

for k = argmaxk(y
t
k)

min(max(mt
bk − α(mt

bk + β),Kl),Kh),
otherwise

(3)

α = 1− e
−2∗epoch
epochmax (4)

The coeficients β and α control temporal synapses
training rate. The α starts on 0 and is increased in time
up to 1 to streghten the temporal map influence during
the training process. The β is fixed on the value 0.0001.
The Kl and Kh = 1 are the weight boundaries (usually
0.0 - 1.0).

The temporal weights are initialized to small 0.00001
on start of the training phase. The recurrent self tempo-
ral weight is always zeroed. The temporal weights are
reset to 0.0 on the each epoch start.

During the SOM traing phase, it may happen that some
neurons never win for any input vector. This hap-
pened mostly if there were too many neurons employed.
Those neurons will cause arithmetic underflow because
their new position is based on their performance to
match input data. This situation is detected and all or-
phaned neurons are re-fit in the the data space to ran-
domly chosen input vector (weights matches directly
the input vector).

3 THSOM Simulation
The reference BatchTHSOM simulation was written in
C language. If it is compared to the simulation with
original non-parallel THSOM learning algorithm[5] it
is even faster. For the net with 64 neurons the original
algorithm took 23 seconds to complete (1000 epochs)
now it takes 18 seconds with same compiler settings
and on same PC. It could be explained with the fact that
batch processing needs slightly less branching and deci-
sion making than original algorithm. Moreover we now
need 10 times less epochs so it is simulated consider-
ably faster anyway.

4 The GPS data
Two datasets were used for new algorithm evaluation.
First an artificial dataset containing a data from a sim-
ulated ride made up using tablet as data source (2217
datapoints). Second batch set was real GPS data from
a ride of few blocks of streets (788 datapoints). Both
datasets were normalized to match (0.0 - 1.0) float co-
ordinates.

The following figures depicts position of the individual
neurons and their time relationships inferred during the

neural network learning stage. The thickness of the line
corresponds to the strongness of the the time linkage
between neurons. In our case, if the neurons A has a
linkage to B and not vice versa, it means that the cars
passed as one way.

4.1 Original THSOM algorithm

The original THSOM algorithm was evaluated in the
past on artifical GPS data. The outstanding difficulty
was a poor convergence on the data set. It took 1000
epochs and even not all neurons were properly placed.
An animation containing the network state after each
epoch was created.

As depicted in Fig. 2 it took quite a lot of epochs for a
network to match up the input data with proper spatial
and temporal weights. Often the network just oscillated
long time in more or less same state (check epoch 8
and 100). Also, the fit of neurons to the roads were not
ideal.

It served as a motivation to improve the training algo-
rithm of the THSOM neural network.

4.2 Performance of the improved THSOM algo-
rithm

The performace of our BatchTHSOM algorithm was
evaluated on the same data set. The number of epochs
was reduced to 100, because it converges much more
quickly. In fact it the experiments showed that even 10
or 20 is enough. The reason for this is the Eq. (4) which
just depends on number of epochs. If the change of this
coeficient is steep, the temporal weights get learn more
quickly (neurons slides to the points much faster).

The Fig. 3 depicts the developement of the THSOM
neural network over the time. The BatchSOM places
the neurons close to the center of the input vector do-
main. Then the neurons starts spreading to fit onto the
data. The temporal connections between the neurons
starts to develop early too.

The one way roads were inferred correctly. It is nearly
done after 42 epochs. Same experiment was peformed
with higher number of neurons as depicted in Fig. 4.
The roads were detected and aproximated with all neu-
rons correctly.

The real GPS data sets performed also well. There was
100 epochs. If there was not enough neurons to cover
the roads the network approximated them a bit as de-
picted in Fig. 5.

The real GPS data set with enough neurons covered
whole with 64 neurons depicted in Fig. 6. The one way
roads were inferred correctly.

5 Conclusion
We introduced new learning algorithm for simulation of
THSOM neural network. The algorithm processes data
in batches. As the first step, well-known BatchSOM
algorithm is applied to spatial map only. Second step,
which is used to train the temporal map using Hebbian
training combines influence of both maps.



Fig. 3 The progess of BatchTHSOM training algo-
rithm on artificial data during epoch 8,16,22 (first row),
27,42,99 (second row) with 16 neurons total. The road
mesh starts to build from vector avg value. On epoch
22 the roundabout starts to emerge. From epoch 27 to
99 not much happens, only the temporal weights got
adjusted, no slight move of neurons in spatial map.

Fig. 4 The progess of BatchTHSOM training algorithm
during epoch 42 with 64 neurons total (artificial data).
The road mesh is correctly modelled, one way roads
correctly infered. The roundabout is modelled well too.

Fig. 5 The trained (100 epochs) BatchTHSOM network
with 16 neurons on real GPS data set, the number of
neurons is too low, some roads we approximated or
dragged to places with more data.

Fig. 6 The trained (100 epochs) BatchTHSOM network
with 16 neurons on real GPS data set, all one way roads
correctly inferred, normal roads detected too, although
they were driven less in both directions.

The models inferred from the simulation of THSOM
network were obtained faster, with less number of
epochs (10 times). The models converged smoothly in-
ferring correctly the shapes and directions of different
roads.

6 Acknowledgments
This work has been supported by the research program
”Transdisciplinary Research in the Area of Biomedical
Engineering II” (MSM6840770012) sponsored by the
Ministry of Education, Youth and Sports of the Czech
Republic.

7 References
[1] J. Koutnik and M. Snorek. Temporal hebbian self-

organizing map for sequences. In 18th Interna-
tional Conference on Artificial Neural Networks
Proceedings (ICANN 2008), volume 5163, pages
639–648. Springer Berlin / Heidelberg, 2008.

[2] T. Kohonen, M. R. Schroeder, and T. S. Huang, ed-
itors. Self-Organizing Maps. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2001.

[3] J. Koutnik. Self-organizing Maps for Modeling and
Recognition of Temporal Sequences. A thesis sub-
mitted to Faculty of Electrical Engineering, Czech
Technical University in Prague., 2008.

[4] Juha Vesanto. Neural network tool for data mining:
Som toolbox, 2000.

[5] M. Skrbek R. Marek. Hardware acceleration for
computational intelligence - thsom neural network
on x86 hardware. In European Simulation and
Modelling Conference 2008, pages 327–331. EU-
ROSIS, 2008.


