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Abstract  

These series of contributions elaborate, classify and compare features of modern 

simulation systems, with special emphasis on physical modelling. First each contribution 

shortly reviews  classical features of simulators: model sorting, event description, time 

event handling, state event handling, and DAE support with or without index reduction, 

and introduces a feature table with ‘yes’ – available, ‘(yes)’ – available but difficult to 

use, ‘no’ – not available, and ‘(no)’ – not available, but implementation possible or way 

around – shown with classic simulators. Next, structural features are introduced, which 

reflect the developments in the last decade: object-oriented approach, a-causal modelling, 

physical modelling, structural dynamic systems, modelling standardisations as Modelica 

and VHDL-AMS, impacts from computer engineering (e.g. state charts), co-simulation, 

and environments. The feature list of 2009 included textual and/or graphical physical 

modelling, simulation-driven visualisation, Modelica modelling standard, textual and/or 

graphical state chart modelling, modelling of structural-dynamic systems, frequency 

analysis, real-time capabilities, solver splitting, and access to derived state equations. 

Mainly based on solutions to the ARGESIM Benchmarks - Benchmarks for Modelling 

and Simulation Techniques, published in ASIM’s scientific journal SNE – Simulation 

News Europe, the a comparison list could be set up, which in 2009 included 21 simulators 

(combination of different modules of simulators). This Revision 2010 extends the list of 

structural features by three new items: functional hybrid modelling, co-simulation, and 

multibody notations. Functional hybrid modelling is an essential extension of hybrid 

decoupling for structural-dynamic systems, co-simulation is an alternative approach in 

multidomain modelling, and the entry of multibody notations remember that Modelica is 

not the only standard. And consequently, the list of simulators is extended by two systems 

supporting functional hybrid modelling. 
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Tab. 1: Availability of classical features in selected simulators  

 
 Model  

Sorting   

 

 MS 

Event  

Description  

ED 

Time  

Event  

Handling 

TEH 

State  

Event  

Handling 

SEH 

DAE  Solver 

 

DAE 

Index 

Reduction 

 

IR 

MATLAB N N N (Y) (Y) N 

Simulink Y (Y) Y (Y) (Y) N 

MATLAB / 

Simulink 
Y Y Y Y (Y) N 

ACSL Y Y Y Y Y N 

Dymola Y Y Y Y Y Y 

 

1 Classical features in Simulation 

Systems 

Model sorting (MS), event description (ED), time 

event handling (TEH), state event handling (SEH), 

and DAE support (DAE) with or without index 

reduction (IR) became desirable Classical Features of 

simulators, supported directly or indirectly in 

simulation systems. Evaluation of the ARGESIM 

Benchmark solutions allows evaluating the 

availability of these features in simulation software. 

Tab. 1 compares the availability of these features in 

the MATLAB / Simulink System, in ACSL and in 

Dymola, the first representative of a physical 

simulator (simulation system with physical a-causal 

modelling level). 

In Tab. 1, the availability of features is indicated by ‘Y’ 

(‘Y’) and ‘N’ (‘N’); a ‘Y’ in parenthesis ‘(Y)’ means, 

that the feature is available but complex to use; an ‘N’ 

in parenthesis ‘(N)’ means, that the feature is yet not 

available, but foreseen or way around. MS - ‘Model 

Sorting’, is a standard feature of a simulator – but 

missing in MATLAB (in principle, MATLAB cannot 

be called a simulator). On the other hand, MATLAB’s 

ODE solvers offer limited features for DAEs (systems 

with mass matrix) and an integration stop on event 

condition, so that SHE and DAE get a (‘Y’). In 

Simulink, event descriptions are possible by means of 

triggered subsystems, so that ED gets a ‘(Y)’ because of 

complexity. A combination of MATLAB and Simulink 

suggest putting the event description and handling at 

MATLAB level, so that ED and SHE get both a ‘Y’. 

DAE solving is based on modified ODE solvers, using 

the nested approach (see before), so DE gets only a 

‘(Y)’ for all MATLAB/Simulink combinations. Time 

events are not supported in MATLAB, but they are 

basic feature in Simulink. 

ACSL is a classical simulator with sophisticated state 

event handling, and since version 10 (2001) DAEs can 

be modelled directly by the residuum construct, and 

they are solved by the DASSL algorithm (a well-

known direct DAE solver, based on the simultaneous 

approach), or by modified ODE solvers (nested 

approach) – so ‘Y’ for ED, SHE, and DAE. In case of 

DAE index n = 1, the DASSL algorithm guarantees 

convergence, in case of higher index integration may 

fail. ACSL does not perform index reduction (IR ‘N’). 

ACSL comes with a sophisticated state event 

handling, so that all kind of events can be modelled 

and handled in a comfortable manner. 

Dymola is a modern simulator, implemented in C, and 

based on physical modelling. Model description may 

be given by implicit laws, symbolic manipulations 

extract a proper ODE or DAE state space system, with 

index reduction for high index DAE systems – all 

classical features are available. Dymola started a new 

area in modelling and simulation of continuous and 

hybrid systems. Dymola is based on F. Cellier’s works 

on object-oriented a-causal multidomain modelling, 

e.g. [11, 12]. 

2 Extended Structures and Structural 

Features in Simulators 

There are three basic developments to extend the 

structure of simulators. First, the extension from ODEs 

to DAE stimulated the evolvement of Physical 

Modelling – modelling based on laws and physical 

‘modules’, textually und graphically – Dymola started 

the development. Second, influences from computer 

engineering suggest use of UML – Unified Modelling 

Language, especially the use of UML state charts for 

discrete events. And third, as consequence of the hybrid 

decomposition of models by state charts, and influenced 



 

 

 

algorithm 

if (revolute1.phi 

   <= phipin then 

   revolute1.length:=ls; 

end if;  

if (revolute1.phi 

   < phipin then 

   revolute1.length:=ll; 

end if; 

 

   equation /*pendulum*/ 

     v = length*der(phi); 

     vdot = der(v); 

     mass*vdot/length + mass*g*  

          sin(phi) +damping*v = 0; 

   algorithm 

    if (phi<=phipin) then length:=ls; 

end if; 

    if (phi>phipin) then length:=l1; 

end if; 

 

Fig. 1: Modelica model for Constrained Pendulum (mixed model / textual model) 

 

by experiences from co-simulation, handling of 

structural dynamic systems became more important 

over the years. 

2.1 Physical Modelling 

In the 1990s, many attempts have been made to 

improve and to extend structures, especially for the task 

of mathematical modelling. The basic problem was the 

state space description, which limited the construction 

of modular and flexible modelling libraries. Two 

developments helped to overcome this problem. On 

modelling level, the idea of physical modelling gave 

new input, and on implementation level, the object-

oriented view helped to leave the constraints of 

input/output relations. In physical modelling, a typical 

procedure for modelling is to cut a system into 

subsystems and to account for the behaviour at the 

interfaces. Balances of mass, energy and momentum 

and material equations model each subsystem. The 

complete model is obtained by combining the 

descriptions of the subsystems and the interfaces. This 

approach requires a modelling paradigm different to 

classical input/output modelling. A model is considered 

as a constraint between system variables, which leads 

naturally to DAE descriptions. 

In 1996, the situation was thus similar to the mid 

1960s when CSSL was defined as a unification of the 

techniques and ideas of many different simulation 

programs. An international effort was initiated in 

September 1996 for bringing together expertise in 

object-oriented physical modelling (port based 

modelling) and defining a modern uniform modelling 

language – mainly driven by the developers of 

Dymola. The new modelling language is called 

Modelica, [9]. Modelica is intended for modelling 

within many application domains such as electrical 

circuits, multibody systems, drive trains, hydraulics, 

thermo-dynamical systems, and chemical processes 

etc. It supports several modelling formalisms: 

ordinary differential equations, differential-algebraic 

equations, bond graphs, finite state automata, and Petri 

nets etc. For details and applications see e.g. [12, 10]. 

When the development of Modelica started, also a 

competitive development, the extension of VHDL 

towards VHDL-AMS was initiated. Both modelling 

frames aimed for general-purpose use, but VHDL-

AMS mainly addresses circuit design, and Modelica 

covers the broader area of physical modelling; and 

modelling constructs such as Petri nets and finite 

automata could broaden the application area.  

While also VHDL-AMS was aiming for multidomain 

modelling, there still very efficient simulators for 

special domains are used, like simulators for 

multibody systems. In principle, these systems are 

application-based modelling environments, which 

support a-causal modelling in their domain. An 

interesting theoretical questions occurs – is it possible 

to translate from Modelica to such specific model 

notation – and vice versa? – For a subset modelling 

modules the answer must be ‘yes’. As multibody 

dynamics and Modelica multidomain modelling are 

closer with respect to a ‘common’ application area 

than VHDL-AMS, application-oriented a-causal 

modelling entered in this comparison in Rev.2010, 

while the entry of VHDL-AMS is still under 

discussion.  

The translator from Modelica into the target simulator 

must not only be able to sort equations, it must be able 

to process the implicit equations symbolically and to 

perform DAE index reduction (or a way around). Up 

to now – similar to VHDL-AMS – some simulation 

systems understand Modelica (2009; generic – new 

simulator with Modelica modelling, extension - 

Modelica modelling interface for existing simulator): 

 Dymola from Dynasim (generic),  

 MathModelica from MathCore Engineering 

(generic) 

 SimulationX from ISI (generic/extension) 

 Scilab/Scicos (extension) 

 MapleSim (a Maple Toolbox) 

 Open Modelica -  (since 2004 the University 

of Lyngby develops and  provides  

an open Modelica simulation environment 

(generic), 

 Mosilab - Fraunhofer Gesellschaft develops a 

generic Modelica simulator (generic) 

 Simscape – the physical modelling language 

in MATLAB/Simulink – Modelica-like 

Recently (2009 - 2010), Modelica-based ODE-solving 

interpreters and model re-compilers with ODE suites 

enrich the variety by a new feature, functional hybrid 

http://www.dynasim.se/
http://www.mathcore.com/


 

Fig. 2 State chart control of Internal Events for 

switching in one singular model (one model 

instance) 

modelling (FHM). Examples for this type of new 

systems, which allow for causality change (and 

subsequent state change) during runtime, are  

 Sol (ETH Zürich; D. Zimmer, F. Cellier) 

 Hydra / SUNDIALS suite (Univ. Nottingham; 

H. Nilsson) 

As Modelica also incorporates graphical model 

elements, the user may choose between textual 

modelling, graphical modelling, and modelling using 

elements from an application library. Furthermore, 

graphical and textual modelling may be mixed in 

various kinds. The minimal modelling environment is 

a text editor; a comfortable modelling environment 

offers a graphical modelling editor. For the 

Constrained Pendulum example, the basic physical 

dynamics could be modelled fully textually (Fig. 1, at 

right), or graphically with joint and mass elements, 

and the event of length change is described in an 

algorithm section, with variables interfacing to the 

predefined variables in the graphical model part 

(Fig. 1, at left). 

2.2 UML State Chart Modelling 

In late 1990s, computer science initiated a new 

development for modelling discontinuous changes. 

The Unified Modelling Language (UML) is one of the 

most important standards for specification and design 

of object oriented systems. This standard was tuned 

for real time applications in the form of a new 

proposal, UML Real-Time (UML-RT). By means of 

UML-RT, objects can hold the dynamic behaviour of 

an ODE.  

In 1999, a simulation research group at the Technical 

University of St. Petersburg used this approach in 

combination with a hybrid state machine for the 

development of a hybrid simulator (MVS), from 2000 

on available commercially as simulator AnyLogic. The 

modelling language of AnyLogic is an extension of 

UML-RT; the main building block is the Active Object. 

Active objects have internal structure and behaviour, 

and allow encapsulating of other objects to any desired 

depth. Active objects interact with their surroundings 

through boundary objects: ports for discrete 

communication, and variables for continuous 

communication. While discrete model parts are 

described state charts, events, timers and messages, the 

continuous models are described by ODEs and DAEs in 

CSSL-type notation and with state charts within an 

object. 

2.3 Hybrid Modelling and Structural-dynamic 

Modelling 

Continuous simulation and discrete simulation have 

different roots, but they are using the same method, 

the analysis in the time domain. During the last 

decades a broad variety of model frames (model 

descriptions) has been developed. In continuous and 

hybrid simulation, the explicit or implicit state space 

description is used as common denominator. This state 

space may be described textually, or by signal-

oriented graphic blocks (e.g. SIMULINK), or by 

physically based block descriptions (Modelica, 

VHDL-AMS).  

Hybrid systems – systems with state events of 

essential types, often come together with a change of 

the dimension of the state space, then called 

Structural-dynamic Systems. In principle, structural-

dynamic systems can be seen from two extreme 

viewpoints. The one says, in a maximal state space, 

state events switch on and off algebraic conditions, 

which freeze certain states for certain periods. The 

other one says that a global discrete state space 

controls local models with fixed state spaces, whereby 

the local models may be also discrete or static. These 

viewpoints derive two different approaches for 

structural dynamic systems modelling, the maximal 

state space, and the hybrid decomposition 

(Breitenecker et al., [4, 5]). 

 

Maximal state space for structural-dynamic systems 

– internal events 

Most implementations of physically based model 

descriptions support a big monolithic model 

description, derived from laws, ODEs, DAEs, state 

event functions and internal events. The state space is 

maximal and static, index reduction in combination 

with constraints keep a consistent state space. For 

instance, Dymola, OpenModelica, and VHDL-AMS 

follow this approach. This approach can be classified 

with respect to event implementation. The approach 

handles all events of any kind (SE-P – state event 

causing parameter change, SE-S – state event causing 

state change, and SE-D – state event causing change 

of dimension / of degree of freedom) within the ODE 

solver frame, also events which change the state space 

dimension (change of degree of freedoms) – 

consequently called internal events. 



 

Fig. 4 State chart control of External Events for 

switching two different instances of one model 

 

Fig. 3 State chart control of External Events for 

switching between two different models 

Using the classical state chart notation, internal state 

events I-SE caused by the model schedule the model 

itself, with usually different re-initialisations 

(depending on the event type I-SE-P, I-SES, I-SE-D; 

Fig. 2-4). For instance, VHDL-AMS and Dymola 

follow this approach, handling also DAE models with 

index higher than 1; discrete model parts are only 

supported at event level. ACSL and MATLAB / 

Simulink generate a maximal state space. 

Hybrid decomposition for structural-dynamic 

systems – external events 

The hybrid decomposition approach makes use of 

external events (E-SE), which controls the sequence 

and the serial coupling of one model or of more 

models. A convenient tool for switching between 

models is a state chart, driven by the external events – 

which itself are generated by the models. Following 

e.g. the UML-RT notation, control for continuous 

models and for discrete actions can by modelled by 

state charts. Fig. 3 shows the hybrid coupling of two 

models, which may be extended to an arbitrary 

number of models, with possible events E-SE-P, E-

SE-S, and ESE-D. As special case, this technique may 

be also used for serial conditional ‘execution’ of one 

model – Fig. 4 (only for SE-P and SE-S). 

This approach additionally allows not only 

dynamically changing state spaces, but also different 

model types, like ODEs, linear ODEs (to be analysed 

by linear theory), PDEs, co-simulation, etc. to be 

processed in serial or also in parallel, so that also co-

simulation can be formulated based on external 

events. The approach allows handling all events also 

outside the ODE solver frame. After an event, a very 

new model can be started. This procedure may make 

sense especially in case of events of type SE-D and 

SE-S. As consequence, consecutive models of 

different state spaces may be used. 

2.4 Functional Hybrid Modelling 

Functional Hybrid Modelling – (FHM) is a 

generalisation of the previously discussed hybrids 

decomposition for structural-dynamic systems: it 

provides dynamic change of models with different 

causalities during the simulation, [19, 20]. 

Modelica – like simulators are designed and 

implemented on the assumption that the causality of 

the model does not change during simulation, which 

simplifies the language design and allows for 

generation of efficient simulation code. But for 

genuine hybrid models, the assumption of fixed 

causality is very limiting and prevents often efficient 

simulation of hybrid models. Functional Hybrid 

Modelling is a new approach to non-causal modelling 

that promotes models as first class entities and 

supports structurally dynamics by allowing arbitrary 

switching among model configurations during 

simulation. Fixed causality is thus not assumed in 

simulators supporting FHM. In such simulators, as Sol 

[17, 18] and Hydra [20, 21], and partly in Mosilab [13, 

14], continuous simulation remains efficient because 

of dynamic generation of simulation code at each 

change of the configuration, and the use of a standard 

DAE solver. Structural change during runtime of 

course incurs an overhead, but this overhead is modest 

in the majority of problems – except contact problems.  

FHM may also be seen as dynamic version of the fore-

mentioned hybrid decomposition of structural-

dynamic systems with external events. In consistency 

with the previous definitions of external events, in 

FHM external events switch not only to a new model, 

they generate first the new model. 

From another viewpoint, hybrid decomposition and 

functional hybrid modelling go beyond the present 

Modelica standard (spring 2010), because language 

elements and translation proposals are still under 

consideration in Modelica and cause severe problems. 

FHM feature is new in Revision 2010 of the 

classification. 



2.5 Real-time Solution and Solver Splitting 

Ziegler proposes a separation of model frame and 

experimental frame. But this separation becomes 

difficult, if the simulation task needs specific 

algorithmic methods. In case of a real-time simulation 

task, proper algorithm choice and specific model 

translations are important and – as real-time 

simulation (RTS) and DAE iterative solving are 

almost contradictions – a challenge for simulation 

systems with physical modelling level.  

Another idea, which comes along with the 

development of Simscape, is ‘solver splitting’ (SSP). 

Modelling physical components very often results in 

DAEs, while control systems around the physical 

model parts are causal, governed by ODEs, and very 

often coupled via sampled data. It could make sense, 

to ‘split’ the ODE solver into a DAE solver for the 

physical model, and into an ODE solver for the causal 

model parts. In principle, this solver splitting is a first 

step towards co-simulation. 

2.6 Co-Simulation 

The feature Co-Simulation (CO-S) is new in Revision 

2010 of the classification. In multidomain modelling, 

co-simulation is a very renowned tool for coupling 

two simulators at runtime. At the level of modelling, 

the advantages of the simulators for specific 

modelling approaches can be used, and at simulation 

level, specific solvers calculate in their domain –co-

simulation couples both simulators either via a 

backbone or via one of the simulators at runtime. 

Clearly, the simulated systems are now hybrid discrete 

systems, because of the discrete coupling at 

communication time instants. Co-simulation, although 

very earlier developed, may be seen as generalisation 

of the feature ‘solver splitting’ 

3 Availability of Structural Features in 

Simulation Systems 

While the classical features discussed before address 

the CSSL-standard, structural features characterise 

features for physical modelling and for structural 

dynamic systems. This section sketches the 

availability or of structural features in some 

simulators, and summarises the results in Tab. 2.  

3.1 Structural Features in Classification and 

Evaluation 

Based on the ARGESIM Comparisons on Simulation 

Software and Simulation Techniques ([1, 2]) at Vienna 

University of Technology a classification of classical, 

structural and advanced features of simulators is run 

since 2006, with evaluation of commercial and 

experimental simulators [6. 7, 8]. This contribution 

extends the list of features from [8] – Classification 

Rev. 2009 – by three items and adds two experimental 

simulators. The structural features for evaluation of 

simulation systems may be classified anew follows: 

 Support of a-causal physical modelling  

(sometimes called port-based modelling) at 

textual (PM-T) or graphical level (PM-G), 

 Modelica standard (MOD) for a-causal 

physical modelling, or application-based a-

causal modelling features like multibody 

notations (AMOD; new in Rev. 2010), 

and in this context the open access to the 

derived state equations (OAE) 

 Decomposition of structural dynamic systems 

with dynamic features (SD), and as 

generalisation functional hybrid modelling 

(FHM) – new in Rev. 2010 

 Support of state chart modelling or a of a 

similar construct, by means of textual (SC-T) 

or graphical (SC-G) constructs,  

 Features of the simulation environment, like 

simulation-driven visualisation (VIS),  

frequency analysis (FA), and open extendable 

environment (ENV) 

 Algorithmic features, like real-time 

capabilities (RT), solver – splitting (SSP),  

and co-simulation (CO-S; new in Revision 

2010) 

In principle, each combination of the above features is 

possible. By means of the maximal state space 

approach, each classic simulator can handle structural 

dynamic systems, but a-causal modelling may be 

supported or not, and state chart modelling may be 

available or not. Simulators with a-causal modelling 

may support hybrid decomposition or not, and state 

chart modelling may be available or not. Simulators 

with features for state chart modelling may support 

hybrid decomposition or not, and a-causal modelling 

may be offered or not. In general, interpreter-oriented 

simulators offer more structural flexibility, but modern 

software structures would allow also flexibility with 

precompiled models or with models compiled ‘on the 

fly’. With functional hybrid modelling, the difference 

between model interpretation, model translation and 

model compilation becomes more or less obsolete, 

because the ‘model transformation’ to an implicit state 

space description (to be used by a DAE solver) is 

performed also during runtime. In this context, open 

access to generated equations (OEA) becomes more 

and more important – for efficiency inspection and re-

use in other systems. 

In addition, of interest are also structural features of 

the simulator environment, as simulation-driven 

visualisation (with visualisation objects defined with 

the model objects; VIS), frequency domain analysis 

and linearization for steady state analysis (FA), and 

extended and extendable environment for complex 

experiments and data pre- and post-processing (ENV) 

– discussed in this Revision 2010 of the classification.  

For the future the following new classification items 

are planned: optimisation and identification (OPID), 

System Dynamics modelling (SYS-D), spatial 



dynamics (SPAT), parallel simulation (PAR), and – 

still under discussion - VHDL-AMS standard (V-

AMS). 

3.2 A Review of structural Features in Selected 

Simulation Systems 

The mainly interpretative systems MATLAB / 

Simulink offer different approaches. First, MATLAB 

itself allows any kind of static and dynamic 

decomposition (SD ‘Y’), but MATLAB is not a 

simulator, because the model equations have to be 

provided in a sorted manner, to be called from an 

ODE solver (MS ‘N’). Second, MATLAB allows 

hybrid decomposition at MATLAB level with Simulink 

models. There, from MATLAB different Simulink 

models are called conditionally, and in Simulink, a state 

event is determined by the hit-crossing block 

(terminating the simulation). Simulink is MATLAB’s 

simulation module for block-oriented dynamic models 

(directed signal graphs), which can be combined with 

Stateflow, MATLAB’s module for event-driven state 

changes described by state charts (SC-T and SC-G ‘Y’).  

At Simulink level, Stateflow, Simulink’s state chart 

modelling tool, may control different submodels. But 

Simulink can only work with a maximal state space 

and does not allow hybrid decomposition (SD ‘N). 

Neither basic MATLAB nor basic Simulink support a-

causal modelling. First MATLAB/Simulink modules 

for physical modelling (e.g. Hydraulic Blockset and 

others, 2004 - 2008) were precompiled to a classical 

state space (PM-T and PM-G ‘N’); Modelica 

modelling is not supported (MOD ‘N’). But with the 

basic Simscape model language, MATLAB introduces 

physical modelling – with stronger relations to 

application areas than Modelica – so AMOD – ‘Y’. 

For DAEs, MATLAB and Simulink offer modified 

LSODE solvers (implicit solvers) for the nested DAE 

solving approach. In MATLAB any kind of simulation 

– driven visualisation can be programmed and used in 

MATLAB or Simulink or in both, but not based on the 

model definition blocks (VIS ‘(Y)’). From the 

beginning on, MATLAB and Simulink offered 

frequency analysis (FA ‘Y’), and clearly, MATLAB is 

a very powerful environment for Simulink, Stateflow, 

for all other Toolboxes, and for MATLAB itself (ENV 

‘Y’). In general, MATLAB and Simulink offer real 

time features (RT ‘Y’), solver splitting can be done 

manually (SSP ‘(Y)’). All derived equations are 

accessible, in m-files, mdl-files and C-files (OEA ‘Y’). 

All MATLAB modules allow access to derived 

equations and partly generation of C models or Java 

model, so OAE – ‘Y’. Simulink works with a maximal 

state space, so FHM and also SD -‘N’, but in MATLAB 

the new symbolic toolbox may be used to generate new 

models after stooping a previous model at an event – 

consequently FHM – ‘(Y)’. 

ACSL – Advanced Continuous Simulation Language 

– has been developed since more than 25 years. Last 

extensions were a change to C as basic language 

(instead of FORTRAN), and DAE features using the 

nested approach with classical solvers, or direct 

implicit DAE solving with DASSL Code, DAE - ‘Y’, 

IR - ‘N’). From the beginning on, steady state 

calculation, linearization and frequency analysis was a 

standard feature of ACSL’s simulator kernel (FA ‘Y’). 

Since 2000, the environment has been enriched by 

modules for modelling and environment modules. The 

first module was a graphical modeller, which seems to 

make use of physical modelling, but in behind a 

classical state space is used – PM-T and PM-G ‘N’. 

Furthermore, a simulation-driven visualisation system 

(third party) is offered – VIS ‘(Y)’. There exist real 

time interfaces - RT ‘(Y)’, solver splitting may be 

done manually (SSP ‘(Y)’), system equations are open 

in FORTRAN or C files – OEA – ‘Y’. ACSL works 

with a model compiler which generates a maximal 

state space, so SD – ‘N’. FHM – ‘N’. 

Dymola, introduced by F. E. Cellier as a-causal 

modelling language, and developed to a simulator by 

H. Elmquist, can be called the mother of Modelica. 

Dymola is based on a-causal physical modelling and 

initiated Modelica; consequently, it fully supports 

Modelica these structural features (PM-T, PM-G, and 

MOD ‘Y’). Together with the model objects, also 

graphical objects may be defined, so that simulation 

based pseudo-3D visualisation is available (VIS ‘Y’). 

A key feature of Dymola is the very sophisticated 

index reduction by the modified Pantelides algorithm, 

so Dymola handles any DAE system, also with higher 

index, with bravura (DAE and IR ‘Y’). For DAE 

solving, modified DASSL algorithms are used. In 

software structure, Dymola is similar to ACSL, using 

an extended CSSL structure as given in Fig. 1 – with 

the modification that all discrete actions are put into 

one event module, where CASE - constructs 

distinguish between the different events (this structure 

is based on the first simulator engine Dymola used, 

the DS-Block System of DLR Oberpfaffenhofen). 

There exist real time interfaces, - RT ‘(Y)’, solver 

splitting cannot be provided, a way around may be 

inline coding – SSP - ‘(N)’. Up to now no access to 

derived equations is possible -OEA ‘N’. As Dymola 

generates a maximal state space, neither structural 

decomposition nor functional hybrid modelling is 

available, SD – ‘N’, FHM – ‘N’.  

The goal of the Open Modelica project is to create a 

complete Modelica modelling, compilation and 

simulation environment based on free software 

distributed in binary and source code form. The whole 

OpenModelica environment consists of open software: 

OMC – the Open Modelica Compiler translates 

Modelica models (with index reduction); OMShell as 

interactive session handler is a minimal experiment 

frame; Modelica models may be set up by a simple 

text editor or by a graphical model editor. 

Open Modelica is a generic Modelica simulator, so all 

basic features are met (ED, SEH, DAE, PM-T, PM-G, 

IR and MOD ‘Y’; for DAE solving, variants of DASSL 

solver are used). P. Fritzson, the initiator of Open 

Modelica puts emphasis on discrete events and hybrid 



 

Fig. 5 Visualization of a constrained pendulum in 

MapleSim using Multibody-Systems 

modelling, so documentation comes with clear advice 

for use of IF – and WHEN – clauses in Modelica, and 

with state chart modules in DrModelica – so SC-T ‘Y’. 

For graphical state chart modelling the experimental 

Modelica state chart library can be used – SC-G ‘(Y)’. 

Real-time is up to now no subject of Open Modelica 

(RT ‘N’), but derived equations are accessible, OEA - 

‘Y’. 

SimulationX is a new Modelica simulator developed 

by ITI simulation, Dresden. This almost generic 

Modelica simulator is based on ITI’s simulation 

system ITI-SIM, where the generic IT-SIM modelling 

frame has been replaced by Modelica modelling. From 

the very beginning on, ITI-SIM concentrated on 

physical modelling, with a theoretical background 

from power graphs and bond graphs. The simulation 

engine from ITI-SIM drives also SimulationX, using a 

sophisticated implicit integration scheme, with state 

event handling. 

Consequently, all features related to physical 

modelling are available: (ED, SEH, DAE, PM-T, PM-

G, and MOD ‘Y’; index reduction is not really 

implemented – IR ‘(N)’.  State chart constructs are not 

directly supported (SC-T ‘N’), but due to Modelica 

compatibility the Modelica state chart library can be 

used (SC-G – ‘(Y)’. Frequency analysis is directly 

supported in the simulation environment (FA – ‘Y’), 

as well as interfaces to other systems (ENV – ‘(Y)’) 

and pseudo-3D visualisation (VIS – ‘Y’), RT 

interfaces are available (RT ‘(Y)’). AS SimulationX is 

based on a previous physical modelling simulator, 

application-oriented balance network equations can be 

used, so AMOD – ‘Y’. 

AnyLogic is based on hybrid automata (SC-T and 

SC-G - ‘Y’). Consequently, hybrid decomposition 

and control by external events is possible, so ED, SD 

- ‘Y’. But implementation of functional hybrid 

modelling would cause a big effort, so FHM – ‘(N)’. 

AnyLogic can deal partly with implicit systems (only 

nested approach, DAE ‘(Y)’), but does not support a-

causal modelling (PM-T, PM-G - ‘N’) and does not 

support Modelica, MOD - ‘N’, and also AMOD – 

‘N’. Furthermore, new versions of AnyLogic 

concentrate more on discrete modelling and 

modelling with System Dynamics, but without event 

detection (SEH ‘(N)’. AnyLogic offers many other 

modelling paradigms, as System Dynamics, Agent-

based Simulation, and DEVS. AnyLogic is Java-

based and provides simulation-driven visualisation 

and animation of model objects (VIS ‘Y’) and can 

also generate Java web applets. From software 

engineering view, AnyLogic is a programming 

environment for Java – so ENV – ‘(Y)’. Real-time is 

up to now no subject of AnyLogic (RT ‘N’), as well 

as solver complexity (SSP ‘N’), but all equation open 

in Java, OEA - ‘Y’. ModelVision is related to 

AnyLogic (similar features). 

Maple – developed by Maplesoft, Canada, has 

developed a toolbox MapleSim, which partly 

understands Modelica models (PM-T, PM-G, and 

MOD – ‘Y’). MapleSim comes with a big library of 

physical components, basically application-oriented 

physical notation, AMOD – ‘Y’.  

MapleSim’s modeling libraries are based on physical 

components with defined connectors (ports). The 

dynamics of a component may be defined by Maple 

ODE/DAE notation, Maple notation for any 

auxiliaries and conditions, or by basic Modelica 

blocks. MapleSim’s modeling concept follows P. 

Breedveld’s ideas on port-based modeling [24]. 

Furthermore, multibody components can be linked 

with construction drawings for animation purposes. 

Maple also acts as environment and provides 

sophisticated DAE solvers, as well as symbolic 

algorithms for index reduction (DAE, IR, ENV, VIS, 

and FA – ‘Y’). New releases offer event handling 

(ED, TEH, SEH - ‘Y’), there exist limited real time 

interfaces, RT - ‘(Y)’, and derived equations are open 

for access and use in other systems, OEA - ‘Y’. 

Graphical state chart notation may come from the 

experimental Modelica state chart library, SC-T – ‘N’, 

SC-G – ‘(Y)’. Structural dynamic systems can be 

controlled from Maple loops, SD – ‘(Y)’, but 

functional hybrid modelling would cause user-defined 

symbolic manipulations, so FHM – ‘(N)’. 

Scilab/Scicos is an open source alternative to 

MATLAB / Simulink, developed in France. Scicos is a 

graphical dynamical system modeller and simulator 

toolbox included in Scilab. So it has nearly the same 

features as MATLAB: no equation sorting– MS – ‘N’; 

DE, IR, PM-T, PM-G, MOD, SC-T, and SC-G – ‘N’; 

SEH, DAE, and VIS – ‘(Y)’, remarkably – SD, FA 

and ENV – ‘Y’. Similarly, Scicos has classical 

features ED, SEH, and DAE – ‘Y’. The developers of 

Scicos started early with a kind of physical modelling 

(PM-T, PM-G – ‘Y’). At present extensions are 

prepared: Modelica models (text/graphic) – so MOD 

and IR ‘(Y)’, and refining the IF-THEN-ELSE and 

WHEN clause introducing different classes of 

associated events, resulting ‘state chart clauses’ - so 

SC-T – ‘Y’. Real-time features are available, so RT - 

‘Y’, solver splitting could be done – SSP ‘(Y)’, 

derived equations are open for access – OEA ‘Y’. 

Structural dynamic modelling and functional hybrid 

modelling would be possible at basic Scilab level, 

with more or less effort.  



Tab. 2:  Availability structural features in selected simulators  
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MATLAB N N (Y) (Y) N N N (Y) N N N Y Y Y (Y) Y Y 

Simulink Y (Y) (Y) (Y) N N (N) (Y) N N N N Y Y (N) Y (Y) 

MATLAB/ 

Simulink 
Y Y Y (Y) N N (N) (Y) N N N Y Y Y (Y) Y Y 

Simulink / 

Stateflow 
Y Y Y Y N N (N) (Y) N (Y) Y N Y Y (N) Y (Y) 

Simulink / 

Simscape 
Y Y Y Y (Y) Y Y (Y) (N) N N N Y (Y) (Y) Y (Y) 

SL 

Simscape 

Stateflow 

Y Y Y Y (Y) Y Y (Y) (N) (Y) Y N Y (Y) (N) Y (Y) 

ML/SL 

Simscape 

Stateflow 

Y Y Y Y (Y) Y Y (Y) (N) (Y) Y Y Y (Y) (N) Y Y 

ACSL Y Y Y Y N N (N) (Y) N N N N Y (Y) (Y) Y Y 

Dymola Y Y Y Y Y Y Y Y Y (Y) (Y) N (N) (Y) (N) N (Y) 

Math 

Modelica 
Y Y Y Y Y Y Y (Y) Y (N) (Y) N (N) (N) N (Y) (N) 

MathMod./ 

Mathemati

ca 

Y Y Y Y Y Y Y Y Y (N) (Y) Y Y (N) N (Y) Y 

Mosilab Y Y Y Y (N) Y Y (N) (Y) Y Y Y N (N) (N) Y (Y) 

Open  

Modelica 
Y Y Y Y Y Y (N) (N) Y (N) (Y) N N (N) (N) Y N 

Simulation

X 
Y Y Y Y Y Y Y Y Y (N) (Y) N Y (Y) (N)  (Y) 

AnyLogic Y Y (Y) (Y) N N N Y N Y Y Y N (N) N Y N 

Model  

Vision 
Y Y Y Y Y Y N Y N Y Y Y Y N N Y N 

Scilab N N (Y) (Y) N N N (Y) N N N Y Y Y (Y) Y Y 

Scicos Y (Y) Y Y (Y) Y Y (Y) (Y) Y (Y) N N Y (N) Y N 

Scilab 

/ Scicos 
Y Y Y Y (Y) Y Y (Y) (Y) Y (Y) Y Y Y (N) Y Y 

Maple N N (Y) Y (N) N N (Y) N N N Y Y N (Y) Y Y 

MapleSim Y (Y) (Y) Y Y Y Y Y Y N N (Y) (Y) Y (N) Y Y 

 

Mosilab / Sol / Hydra. Mosilab has been developed 

by Fraunhofer in the years 2006 – 2008, designed as 

simulator for structural dynamic systems with 

Modelica modelling and Dymola-like features. So 



Mosilab shows features similar to Dymola, but is 

designed for structural dynamic systems which can be 

coupled via state charts, so SD – ‘Y’,  SC-T – ‘Y’, 

SC-G – ‘(Y)’, and comes with open C and C++ 

models. OEA – ‘Y’. But functional hybrid modelling 

would cause a major extension of the translator, so 

FHM – ‘(N)’. Unfortunately further developments 

have been postponed. Mosilab’s hybrid modelling 

components are one of the suggestions for hybrid 

extensions in Modelica, for comparison see [14, 15, 

16]. 

Sol (D. Zimmer, F. Cellier, ETH Zürich, [17, 18]) is a 

derivative language of Modelica-type and has been 

especially designed for the convenient expression and 

simulation of variable-structure systems within an 

object-oriented, equation-based modelling framework, 

very close to Modelica and Dymola – so basic features 

coincide with Dymola, especially Modelica 

modelling, MOD – ‘Y’. It partly follows the ideas of 

Mosilab – hybrid decomposition into conditional 

subsequent models – so ‘SD’ – ‘Y’. But as main 

extension, Sol offers dynamics model change and 

interpretative model generation at runtime, so it offers 

functional hybrid modelling in an interpretative 

manner, FHM – ‘Y’.  

Sol’s intention is to be as close as possible to 

Modelica, and Sol’s hybrid modelling components are 

one of the suggestions for hybrid extensions in 

Modelica. The development of Functional Hybrid 

Modelling is in principle independent on Modelica, 

but Sol implements some FHM structures. 

Hydra / SUNDIALS Hydra is a declarative language 

for modelling and simulation of physical systems 

using implicitly formulated (undirected) differential 

algebraic equations (DAEs) – [20, 21]. The language 

provides constructs for definition and composition of 

model fragments that enable modelling and simulation 

of large, complex, structurally dynamic and hybrid 

systems. Currently, Hydra is implemented as a domain 

specific embedded language in Haskell. Thus, full 

power of a modern functional language is available 

(e.g. for meta-modelling) in addition to core 

modelling capabilities. Hydra implements concepts of 

Functional Hybrid Modelling (FHM, [19]) and is the 

first publicly available implementation of an FHM 

language.  

Hydra allows generating DAE models at runtime, in 

any complexity, taking into account changing 

causalities, state space changes, and changes in 

degrees of freedom. For simulation, the SUNDIALS 

DAE solver suite [3] may be used. 

It should be noted, that in context with Mosilab, Sol 

and Hydra (and MKL - Modelling Kernel Language, 

Broman [22, 23]) different developments are 

enriching each other - Modelica Extension and 

Functional Hybrid Modelling, at present both 

‘converging’ at implementation level. FHM may be 

seen as correct formalisation of the more intuitive 

concept of structural dynamic systems in Mosilab [13, 

14].  

3.3 Summary Table for Structural Features in 

Selected Simulation Systems 

Tab. 2 tries to summarise the availability of the 

discussed structural features. As in Tab. 1, the 

availability of features is indicated by ‘Y’ (‘Y’) and ‘N’ 

(‘N’); a ‘Y’ in parenthesis ‘(Y)’ means that the feature 

is available but complex to use; an ‘N’ in parenthesis 

‘(N)’ means, that the feature is yet not available, but 

foreseen or way around exists.  
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