
SIMULATORS FOR PHYSICAL MODELLING –

CLASSIFICATION AND COMPARISON OF

FEATURES / REVISION 2010

Felix Breitenecker
1
, Niki Popper

2
, Günther Zauner

2
, Michael Landsiedl

2
,

Matthias Rößler
1
, Bernhard Heinzl

1
, Andreas Körner

1

1
 Vienna University of Technology, Institute for Analysis and Scientific Computing

1040 Vienna, Wiedner Hauptstraße 8, Austria
2
DWH Simulation Services

 1070 Vienna, Neustiftgasse 57-59

matthias.roessler@tuwien.ac.at (Matthias Rößler)

Abstract

These series of contributions elaborate, classify and compare features of modern

simulation systems, with special emphasis on physical modelling. First each contribution

shortly reviews classical features of simulators: model sorting, event description, time

event handling, state event handling, and DAE support with or without index reduction,

and introduces a feature table with ‘yes’ – available, ‘(yes)’ – available but difficult to

use, ‘no’ – not available, and ‘(no)’ – not available, but implementation possible or way

around – shown with classic simulators. Next, structural features are introduced, which

reflect the developments in the last decade: object-oriented approach, a-causal modelling,

physical modelling, structural dynamic systems, modelling standardisations as Modelica

and VHDL-AMS, impacts from computer engineering (e.g. state charts), co-simulation,

and environments. The feature list of 2009 included textual and/or graphical physical

modelling, simulation-driven visualisation, Modelica modelling standard, textual and/or

graphical state chart modelling, modelling of structural-dynamic systems, frequency

analysis, real-time capabilities, solver splitting, and access to derived state equations.

Mainly based on solutions to the ARGESIM Benchmarks - Benchmarks for Modelling

and Simulation Techniques, published in ASIM’s scientific journal SNE – Simulation

News Europe, the a comparison list could be set up, which in 2009 included 21 simulators

(combination of different modules of simulators). This Revision 2010 extends the list of

structural features by three new items: functional hybrid modelling, co-simulation, and

multibody notations. Functional hybrid modelling is an essential extension of hybrid

decoupling for structural-dynamic systems, co-simulation is an alternative approach in

multidomain modelling, and the entry of multibody notations remember that Modelica is

not the only standard. And consequently, the list of simulators is extended by two systems

supporting functional hybrid modelling.

Keywords: Simulators, Classification, Comparison, Features, Structures

Presenting Author’s biography

Matthias Rößler. He is on his way to finish his diplomastudy in technical mathematics.

He currently writes on his diploma thesis in the course of the INFO-project, a

collaboration between Vienna University of Technology and industrial partners.

His field of activity is physical modeling and simulation.

Tab. 1: Availability of classical features in selected simulators

 Model

Sorting

 MS

Event

Description

ED

Time

Event

Handling

TEH

State

Event

Handling

SEH

DAE Solver

DAE

Index

Reduction

IR

MATLAB N N N (Y) (Y) N

Simulink Y (Y) Y (Y) (Y) N

MATLAB /

Simulink
Y Y Y Y (Y) N

ACSL Y Y Y Y Y N

Dymola Y Y Y Y Y Y

1 Classical features in Simulation

Systems

Model sorting (MS), event description (ED), time

event handling (TEH), state event handling (SEH),

and DAE support (DAE) with or without index

reduction (IR) became desirable Classical Features of

simulators, supported directly or indirectly in

simulation systems. Evaluation of the ARGESIM

Benchmark solutions allows evaluating the

availability of these features in simulation software.

Tab. 1 compares the availability of these features in

the MATLAB / Simulink System, in ACSL and in

Dymola, the first representative of a physical

simulator (simulation system with physical a-causal

modelling level).

In Tab. 1, the availability of features is indicated by ‘Y’

(‘Y’) and ‘N’ (‘N’); a ‘Y’ in parenthesis ‘(Y)’ means,

that the feature is available but complex to use; an ‘N’

in parenthesis ‘(N)’ means, that the feature is yet not

available, but foreseen or way around. MS - ‘Model

Sorting’, is a standard feature of a simulator – but

missing in MATLAB (in principle, MATLAB cannot

be called a simulator). On the other hand, MATLAB’s

ODE solvers offer limited features for DAEs (systems

with mass matrix) and an integration stop on event

condition, so that SHE and DAE get a (‘Y’). In

Simulink, event descriptions are possible by means of

triggered subsystems, so that ED gets a ‘(Y)’ because of

complexity. A combination of MATLAB and Simulink

suggest putting the event description and handling at

MATLAB level, so that ED and SHE get both a ‘Y’.

DAE solving is based on modified ODE solvers, using

the nested approach (see before), so DE gets only a

‘(Y)’ for all MATLAB/Simulink combinations. Time

events are not supported in MATLAB, but they are

basic feature in Simulink.

ACSL is a classical simulator with sophisticated state

event handling, and since version 10 (2001) DAEs can

be modelled directly by the residuum construct, and

they are solved by the DASSL algorithm (a well-

known direct DAE solver, based on the simultaneous

approach), or by modified ODE solvers (nested

approach) – so ‘Y’ for ED, SHE, and DAE. In case of

DAE index n = 1, the DASSL algorithm guarantees

convergence, in case of higher index integration may

fail. ACSL does not perform index reduction (IR ‘N’).

ACSL comes with a sophisticated state event

handling, so that all kind of events can be modelled

and handled in a comfortable manner.

Dymola is a modern simulator, implemented in C, and

based on physical modelling. Model description may

be given by implicit laws, symbolic manipulations

extract a proper ODE or DAE state space system, with

index reduction for high index DAE systems – all

classical features are available. Dymola started a new

area in modelling and simulation of continuous and

hybrid systems. Dymola is based on F. Cellier’s works

on object-oriented a-causal multidomain modelling,

e.g. [11, 12].

2 Extended Structures and Structural

Features in Simulators

There are three basic developments to extend the

structure of simulators. First, the extension from ODEs

to DAE stimulated the evolvement of Physical

Modelling – modelling based on laws and physical

‘modules’, textually und graphically – Dymola started

the development. Second, influences from computer

engineering suggest use of UML – Unified Modelling

Language, especially the use of UML state charts for

discrete events. And third, as consequence of the hybrid

decomposition of models by state charts, and influenced

algorithm

if (revolute1.phi

 <= phipin then

 revolute1.length:=ls;

end if;

if (revolute1.phi

 < phipin then

 revolute1.length:=ll;

end if;

 equation /*pendulum*/

 v = length*der(phi);

 vdot = der(v);

 mass*vdot/length + mass*g*

 sin(phi) +damping*v = 0;

 algorithm

 if (phi<=phipin) then length:=ls;

end if;

 if (phi>phipin) then length:=l1;

end if;

Fig. 1: Modelica model for Constrained Pendulum (mixed model / textual model)

by experiences from co-simulation, handling of

structural dynamic systems became more important

over the years.

2.1 Physical Modelling

In the 1990s, many attempts have been made to

improve and to extend structures, especially for the task

of mathematical modelling. The basic problem was the

state space description, which limited the construction

of modular and flexible modelling libraries. Two

developments helped to overcome this problem. On

modelling level, the idea of physical modelling gave

new input, and on implementation level, the object-

oriented view helped to leave the constraints of

input/output relations. In physical modelling, a typical

procedure for modelling is to cut a system into

subsystems and to account for the behaviour at the

interfaces. Balances of mass, energy and momentum

and material equations model each subsystem. The

complete model is obtained by combining the

descriptions of the subsystems and the interfaces. This

approach requires a modelling paradigm different to

classical input/output modelling. A model is considered

as a constraint between system variables, which leads

naturally to DAE descriptions.

In 1996, the situation was thus similar to the mid

1960s when CSSL was defined as a unification of the

techniques and ideas of many different simulation

programs. An international effort was initiated in

September 1996 for bringing together expertise in

object-oriented physical modelling (port based

modelling) and defining a modern uniform modelling

language – mainly driven by the developers of

Dymola. The new modelling language is called

Modelica, [9]. Modelica is intended for modelling

within many application domains such as electrical

circuits, multibody systems, drive trains, hydraulics,

thermo-dynamical systems, and chemical processes

etc. It supports several modelling formalisms:

ordinary differential equations, differential-algebraic

equations, bond graphs, finite state automata, and Petri

nets etc. For details and applications see e.g. [12, 10].

When the development of Modelica started, also a

competitive development, the extension of VHDL

towards VHDL-AMS was initiated. Both modelling

frames aimed for general-purpose use, but VHDL-

AMS mainly addresses circuit design, and Modelica

covers the broader area of physical modelling; and

modelling constructs such as Petri nets and finite

automata could broaden the application area.

While also VHDL-AMS was aiming for multidomain

modelling, there still very efficient simulators for

special domains are used, like simulators for

multibody systems. In principle, these systems are

application-based modelling environments, which

support a-causal modelling in their domain. An

interesting theoretical questions occurs – is it possible

to translate from Modelica to such specific model

notation – and vice versa? – For a subset modelling

modules the answer must be ‘yes’. As multibody

dynamics and Modelica multidomain modelling are

closer with respect to a ‘common’ application area

than VHDL-AMS, application-oriented a-causal

modelling entered in this comparison in Rev.2010,

while the entry of VHDL-AMS is still under

discussion.

The translator from Modelica into the target simulator

must not only be able to sort equations, it must be able

to process the implicit equations symbolically and to

perform DAE index reduction (or a way around). Up

to now – similar to VHDL-AMS – some simulation

systems understand Modelica (2009; generic – new

simulator with Modelica modelling, extension -

Modelica modelling interface for existing simulator):

 Dymola from Dynasim (generic),

 MathModelica from MathCore Engineering

(generic)

 SimulationX from ISI (generic/extension)

 Scilab/Scicos (extension)

 MapleSim (a Maple Toolbox)

 Open Modelica - (since 2004 the University

of Lyngby develops and provides

an open Modelica simulation environment

(generic),

 Mosilab - Fraunhofer Gesellschaft develops a

generic Modelica simulator (generic)

 Simscape – the physical modelling language

in MATLAB/Simulink – Modelica-like

Recently (2009 - 2010), Modelica-based ODE-solving

interpreters and model re-compilers with ODE suites

enrich the variety by a new feature, functional hybrid

http://www.dynasim.se/
http://www.mathcore.com/

Fig. 2 State chart control of Internal Events for

switching in one singular model (one model

instance)

modelling (FHM). Examples for this type of new

systems, which allow for causality change (and

subsequent state change) during runtime, are

 Sol (ETH Zürich; D. Zimmer, F. Cellier)

 Hydra / SUNDIALS suite (Univ. Nottingham;

H. Nilsson)

As Modelica also incorporates graphical model

elements, the user may choose between textual

modelling, graphical modelling, and modelling using

elements from an application library. Furthermore,

graphical and textual modelling may be mixed in

various kinds. The minimal modelling environment is

a text editor; a comfortable modelling environment

offers a graphical modelling editor. For the

Constrained Pendulum example, the basic physical

dynamics could be modelled fully textually (Fig. 1, at

right), or graphically with joint and mass elements,

and the event of length change is described in an

algorithm section, with variables interfacing to the

predefined variables in the graphical model part

(Fig. 1, at left).

2.2 UML State Chart Modelling

In late 1990s, computer science initiated a new

development for modelling discontinuous changes.

The Unified Modelling Language (UML) is one of the

most important standards for specification and design

of object oriented systems. This standard was tuned

for real time applications in the form of a new

proposal, UML Real-Time (UML-RT). By means of

UML-RT, objects can hold the dynamic behaviour of

an ODE.

In 1999, a simulation research group at the Technical

University of St. Petersburg used this approach in

combination with a hybrid state machine for the

development of a hybrid simulator (MVS), from 2000

on available commercially as simulator AnyLogic. The

modelling language of AnyLogic is an extension of

UML-RT; the main building block is the Active Object.

Active objects have internal structure and behaviour,

and allow encapsulating of other objects to any desired

depth. Active objects interact with their surroundings

through boundary objects: ports for discrete

communication, and variables for continuous

communication. While discrete model parts are

described state charts, events, timers and messages, the

continuous models are described by ODEs and DAEs in

CSSL-type notation and with state charts within an

object.

2.3 Hybrid Modelling and Structural-dynamic

Modelling

Continuous simulation and discrete simulation have

different roots, but they are using the same method,

the analysis in the time domain. During the last

decades a broad variety of model frames (model

descriptions) has been developed. In continuous and

hybrid simulation, the explicit or implicit state space

description is used as common denominator. This state

space may be described textually, or by signal-

oriented graphic blocks (e.g. SIMULINK), or by

physically based block descriptions (Modelica,

VHDL-AMS).

Hybrid systems – systems with state events of

essential types, often come together with a change of

the dimension of the state space, then called

Structural-dynamic Systems. In principle, structural-

dynamic systems can be seen from two extreme

viewpoints. The one says, in a maximal state space,

state events switch on and off algebraic conditions,

which freeze certain states for certain periods. The

other one says that a global discrete state space

controls local models with fixed state spaces, whereby

the local models may be also discrete or static. These

viewpoints derive two different approaches for

structural dynamic systems modelling, the maximal

state space, and the hybrid decomposition

(Breitenecker et al., [4, 5]).

Maximal state space for structural-dynamic systems

– internal events

Most implementations of physically based model

descriptions support a big monolithic model

description, derived from laws, ODEs, DAEs, state

event functions and internal events. The state space is

maximal and static, index reduction in combination

with constraints keep a consistent state space. For

instance, Dymola, OpenModelica, and VHDL-AMS

follow this approach. This approach can be classified

with respect to event implementation. The approach

handles all events of any kind (SE-P – state event

causing parameter change, SE-S – state event causing

state change, and SE-D – state event causing change

of dimension / of degree of freedom) within the ODE

solver frame, also events which change the state space

dimension (change of degree of freedoms) –

consequently called internal events.

Fig. 4 State chart control of External Events for

switching two different instances of one model

Fig. 3 State chart control of External Events for

switching between two different models

Using the classical state chart notation, internal state

events I-SE caused by the model schedule the model

itself, with usually different re-initialisations

(depending on the event type I-SE-P, I-SES, I-SE-D;

Fig. 2-4). For instance, VHDL-AMS and Dymola

follow this approach, handling also DAE models with

index higher than 1; discrete model parts are only

supported at event level. ACSL and MATLAB /

Simulink generate a maximal state space.

Hybrid decomposition for structural-dynamic

systems – external events

The hybrid decomposition approach makes use of

external events (E-SE), which controls the sequence

and the serial coupling of one model or of more

models. A convenient tool for switching between

models is a state chart, driven by the external events –

which itself are generated by the models. Following

e.g. the UML-RT notation, control for continuous

models and for discrete actions can by modelled by

state charts. Fig. 3 shows the hybrid coupling of two

models, which may be extended to an arbitrary

number of models, with possible events E-SE-P, E-

SE-S, and ESE-D. As special case, this technique may

be also used for serial conditional ‘execution’ of one

model – Fig. 4 (only for SE-P and SE-S).

This approach additionally allows not only

dynamically changing state spaces, but also different

model types, like ODEs, linear ODEs (to be analysed

by linear theory), PDEs, co-simulation, etc. to be

processed in serial or also in parallel, so that also co-

simulation can be formulated based on external

events. The approach allows handling all events also

outside the ODE solver frame. After an event, a very

new model can be started. This procedure may make

sense especially in case of events of type SE-D and

SE-S. As consequence, consecutive models of

different state spaces may be used.

2.4 Functional Hybrid Modelling

Functional Hybrid Modelling – (FHM) is a

generalisation of the previously discussed hybrids

decomposition for structural-dynamic systems: it

provides dynamic change of models with different

causalities during the simulation, [19, 20].

Modelica – like simulators are designed and

implemented on the assumption that the causality of

the model does not change during simulation, which

simplifies the language design and allows for

generation of efficient simulation code. But for

genuine hybrid models, the assumption of fixed

causality is very limiting and prevents often efficient

simulation of hybrid models. Functional Hybrid

Modelling is a new approach to non-causal modelling

that promotes models as first class entities and

supports structurally dynamics by allowing arbitrary

switching among model configurations during

simulation. Fixed causality is thus not assumed in

simulators supporting FHM. In such simulators, as Sol

[17, 18] and Hydra [20, 21], and partly in Mosilab [13,

14], continuous simulation remains efficient because

of dynamic generation of simulation code at each

change of the configuration, and the use of a standard

DAE solver. Structural change during runtime of

course incurs an overhead, but this overhead is modest

in the majority of problems – except contact problems.

FHM may also be seen as dynamic version of the fore-

mentioned hybrid decomposition of structural-

dynamic systems with external events. In consistency

with the previous definitions of external events, in

FHM external events switch not only to a new model,

they generate first the new model.

From another viewpoint, hybrid decomposition and

functional hybrid modelling go beyond the present

Modelica standard (spring 2010), because language

elements and translation proposals are still under

consideration in Modelica and cause severe problems.

FHM feature is new in Revision 2010 of the

classification.

2.5 Real-time Solution and Solver Splitting

Ziegler proposes a separation of model frame and

experimental frame. But this separation becomes

difficult, if the simulation task needs specific

algorithmic methods. In case of a real-time simulation

task, proper algorithm choice and specific model

translations are important and – as real-time

simulation (RTS) and DAE iterative solving are

almost contradictions – a challenge for simulation

systems with physical modelling level.

Another idea, which comes along with the

development of Simscape, is ‘solver splitting’ (SSP).

Modelling physical components very often results in

DAEs, while control systems around the physical

model parts are causal, governed by ODEs, and very

often coupled via sampled data. It could make sense,

to ‘split’ the ODE solver into a DAE solver for the

physical model, and into an ODE solver for the causal

model parts. In principle, this solver splitting is a first

step towards co-simulation.

2.6 Co-Simulation

The feature Co-Simulation (CO-S) is new in Revision

2010 of the classification. In multidomain modelling,

co-simulation is a very renowned tool for coupling

two simulators at runtime. At the level of modelling,

the advantages of the simulators for specific

modelling approaches can be used, and at simulation

level, specific solvers calculate in their domain –co-

simulation couples both simulators either via a

backbone or via one of the simulators at runtime.

Clearly, the simulated systems are now hybrid discrete

systems, because of the discrete coupling at

communication time instants. Co-simulation, although

very earlier developed, may be seen as generalisation

of the feature ‘solver splitting’

3 Availability of Structural Features in

Simulation Systems

While the classical features discussed before address

the CSSL-standard, structural features characterise

features for physical modelling and for structural

dynamic systems. This section sketches the

availability or of structural features in some

simulators, and summarises the results in Tab. 2.

3.1 Structural Features in Classification and

Evaluation

Based on the ARGESIM Comparisons on Simulation

Software and Simulation Techniques ([1, 2]) at Vienna

University of Technology a classification of classical,

structural and advanced features of simulators is run

since 2006, with evaluation of commercial and

experimental simulators [6. 7, 8]. This contribution

extends the list of features from [8] – Classification

Rev. 2009 – by three items and adds two experimental

simulators. The structural features for evaluation of

simulation systems may be classified anew follows:

 Support of a-causal physical modelling

(sometimes called port-based modelling) at

textual (PM-T) or graphical level (PM-G),

 Modelica standard (MOD) for a-causal

physical modelling, or application-based a-

causal modelling features like multibody

notations (AMOD; new in Rev. 2010),

and in this context the open access to the

derived state equations (OAE)

 Decomposition of structural dynamic systems

with dynamic features (SD), and as

generalisation functional hybrid modelling

(FHM) – new in Rev. 2010

 Support of state chart modelling or a of a

similar construct, by means of textual (SC-T)

or graphical (SC-G) constructs,

 Features of the simulation environment, like

simulation-driven visualisation (VIS),

frequency analysis (FA), and open extendable

environment (ENV)

 Algorithmic features, like real-time

capabilities (RT), solver – splitting (SSP),

and co-simulation (CO-S; new in Revision

2010)

In principle, each combination of the above features is

possible. By means of the maximal state space

approach, each classic simulator can handle structural

dynamic systems, but a-causal modelling may be

supported or not, and state chart modelling may be

available or not. Simulators with a-causal modelling

may support hybrid decomposition or not, and state

chart modelling may be available or not. Simulators

with features for state chart modelling may support

hybrid decomposition or not, and a-causal modelling

may be offered or not. In general, interpreter-oriented

simulators offer more structural flexibility, but modern

software structures would allow also flexibility with

precompiled models or with models compiled ‘on the

fly’. With functional hybrid modelling, the difference

between model interpretation, model translation and

model compilation becomes more or less obsolete,

because the ‘model transformation’ to an implicit state

space description (to be used by a DAE solver) is

performed also during runtime. In this context, open

access to generated equations (OEA) becomes more

and more important – for efficiency inspection and re-

use in other systems.

In addition, of interest are also structural features of

the simulator environment, as simulation-driven

visualisation (with visualisation objects defined with

the model objects; VIS), frequency domain analysis

and linearization for steady state analysis (FA), and

extended and extendable environment for complex

experiments and data pre- and post-processing (ENV)

– discussed in this Revision 2010 of the classification.

For the future the following new classification items

are planned: optimisation and identification (OPID),

System Dynamics modelling (SYS-D), spatial

dynamics (SPAT), parallel simulation (PAR), and –

still under discussion - VHDL-AMS standard (V-

AMS).

3.2 A Review of structural Features in Selected

Simulation Systems

The mainly interpretative systems MATLAB /

Simulink offer different approaches. First, MATLAB

itself allows any kind of static and dynamic

decomposition (SD ‘Y’), but MATLAB is not a

simulator, because the model equations have to be

provided in a sorted manner, to be called from an

ODE solver (MS ‘N’). Second, MATLAB allows

hybrid decomposition at MATLAB level with Simulink

models. There, from MATLAB different Simulink

models are called conditionally, and in Simulink, a state

event is determined by the hit-crossing block

(terminating the simulation). Simulink is MATLAB’s

simulation module for block-oriented dynamic models

(directed signal graphs), which can be combined with

Stateflow, MATLAB’s module for event-driven state

changes described by state charts (SC-T and SC-G ‘Y’).

At Simulink level, Stateflow, Simulink’s state chart

modelling tool, may control different submodels. But

Simulink can only work with a maximal state space

and does not allow hybrid decomposition (SD ‘N).

Neither basic MATLAB nor basic Simulink support a-

causal modelling. First MATLAB/Simulink modules

for physical modelling (e.g. Hydraulic Blockset and

others, 2004 - 2008) were precompiled to a classical

state space (PM-T and PM-G ‘N’); Modelica

modelling is not supported (MOD ‘N’). But with the

basic Simscape model language, MATLAB introduces

physical modelling – with stronger relations to

application areas than Modelica – so AMOD – ‘Y’.

For DAEs, MATLAB and Simulink offer modified

LSODE solvers (implicit solvers) for the nested DAE

solving approach. In MATLAB any kind of simulation

– driven visualisation can be programmed and used in

MATLAB or Simulink or in both, but not based on the

model definition blocks (VIS ‘(Y)’). From the

beginning on, MATLAB and Simulink offered

frequency analysis (FA ‘Y’), and clearly, MATLAB is

a very powerful environment for Simulink, Stateflow,

for all other Toolboxes, and for MATLAB itself (ENV

‘Y’). In general, MATLAB and Simulink offer real

time features (RT ‘Y’), solver splitting can be done

manually (SSP ‘(Y)’). All derived equations are

accessible, in m-files, mdl-files and C-files (OEA ‘Y’).

All MATLAB modules allow access to derived

equations and partly generation of C models or Java

model, so OAE – ‘Y’. Simulink works with a maximal

state space, so FHM and also SD -‘N’, but in MATLAB

the new symbolic toolbox may be used to generate new

models after stooping a previous model at an event –

consequently FHM – ‘(Y)’.

ACSL – Advanced Continuous Simulation Language

– has been developed since more than 25 years. Last

extensions were a change to C as basic language

(instead of FORTRAN), and DAE features using the

nested approach with classical solvers, or direct

implicit DAE solving with DASSL Code, DAE - ‘Y’,

IR - ‘N’). From the beginning on, steady state

calculation, linearization and frequency analysis was a

standard feature of ACSL’s simulator kernel (FA ‘Y’).

Since 2000, the environment has been enriched by

modules for modelling and environment modules. The

first module was a graphical modeller, which seems to

make use of physical modelling, but in behind a

classical state space is used – PM-T and PM-G ‘N’.

Furthermore, a simulation-driven visualisation system

(third party) is offered – VIS ‘(Y)’. There exist real

time interfaces - RT ‘(Y)’, solver splitting may be

done manually (SSP ‘(Y)’), system equations are open

in FORTRAN or C files – OEA – ‘Y’. ACSL works

with a model compiler which generates a maximal

state space, so SD – ‘N’. FHM – ‘N’.

Dymola, introduced by F. E. Cellier as a-causal

modelling language, and developed to a simulator by

H. Elmquist, can be called the mother of Modelica.

Dymola is based on a-causal physical modelling and

initiated Modelica; consequently, it fully supports

Modelica these structural features (PM-T, PM-G, and

MOD ‘Y’). Together with the model objects, also

graphical objects may be defined, so that simulation

based pseudo-3D visualisation is available (VIS ‘Y’).

A key feature of Dymola is the very sophisticated

index reduction by the modified Pantelides algorithm,

so Dymola handles any DAE system, also with higher

index, with bravura (DAE and IR ‘Y’). For DAE

solving, modified DASSL algorithms are used. In

software structure, Dymola is similar to ACSL, using

an extended CSSL structure as given in Fig. 1 – with

the modification that all discrete actions are put into

one event module, where CASE - constructs

distinguish between the different events (this structure

is based on the first simulator engine Dymola used,

the DS-Block System of DLR Oberpfaffenhofen).

There exist real time interfaces, - RT ‘(Y)’, solver

splitting cannot be provided, a way around may be

inline coding – SSP - ‘(N)’. Up to now no access to

derived equations is possible -OEA ‘N’. As Dymola

generates a maximal state space, neither structural

decomposition nor functional hybrid modelling is

available, SD – ‘N’, FHM – ‘N’.

The goal of the Open Modelica project is to create a

complete Modelica modelling, compilation and

simulation environment based on free software

distributed in binary and source code form. The whole

OpenModelica environment consists of open software:

OMC – the Open Modelica Compiler translates

Modelica models (with index reduction); OMShell as

interactive session handler is a minimal experiment

frame; Modelica models may be set up by a simple

text editor or by a graphical model editor.

Open Modelica is a generic Modelica simulator, so all

basic features are met (ED, SEH, DAE, PM-T, PM-G,

IR and MOD ‘Y’; for DAE solving, variants of DASSL

solver are used). P. Fritzson, the initiator of Open

Modelica puts emphasis on discrete events and hybrid

Fig. 5 Visualization of a constrained pendulum in

MapleSim using Multibody-Systems

modelling, so documentation comes with clear advice

for use of IF – and WHEN – clauses in Modelica, and

with state chart modules in DrModelica – so SC-T ‘Y’.

For graphical state chart modelling the experimental

Modelica state chart library can be used – SC-G ‘(Y)’.

Real-time is up to now no subject of Open Modelica

(RT ‘N’), but derived equations are accessible, OEA -

‘Y’.

SimulationX is a new Modelica simulator developed

by ITI simulation, Dresden. This almost generic

Modelica simulator is based on ITI’s simulation

system ITI-SIM, where the generic IT-SIM modelling

frame has been replaced by Modelica modelling. From

the very beginning on, ITI-SIM concentrated on

physical modelling, with a theoretical background

from power graphs and bond graphs. The simulation

engine from ITI-SIM drives also SimulationX, using a

sophisticated implicit integration scheme, with state

event handling.

Consequently, all features related to physical

modelling are available: (ED, SEH, DAE, PM-T, PM-

G, and MOD ‘Y’; index reduction is not really

implemented – IR ‘(N)’. State chart constructs are not

directly supported (SC-T ‘N’), but due to Modelica

compatibility the Modelica state chart library can be

used (SC-G – ‘(Y)’. Frequency analysis is directly

supported in the simulation environment (FA – ‘Y’),

as well as interfaces to other systems (ENV – ‘(Y)’)

and pseudo-3D visualisation (VIS – ‘Y’), RT

interfaces are available (RT ‘(Y)’). AS SimulationX is

based on a previous physical modelling simulator,

application-oriented balance network equations can be

used, so AMOD – ‘Y’.

AnyLogic is based on hybrid automata (SC-T and

SC-G - ‘Y’). Consequently, hybrid decomposition

and control by external events is possible, so ED, SD

- ‘Y’. But implementation of functional hybrid

modelling would cause a big effort, so FHM – ‘(N)’.

AnyLogic can deal partly with implicit systems (only

nested approach, DAE ‘(Y)’), but does not support a-

causal modelling (PM-T, PM-G - ‘N’) and does not

support Modelica, MOD - ‘N’, and also AMOD –

‘N’. Furthermore, new versions of AnyLogic

concentrate more on discrete modelling and

modelling with System Dynamics, but without event

detection (SEH ‘(N)’. AnyLogic offers many other

modelling paradigms, as System Dynamics, Agent-

based Simulation, and DEVS. AnyLogic is Java-

based and provides simulation-driven visualisation

and animation of model objects (VIS ‘Y’) and can

also generate Java web applets. From software

engineering view, AnyLogic is a programming

environment for Java – so ENV – ‘(Y)’. Real-time is

up to now no subject of AnyLogic (RT ‘N’), as well

as solver complexity (SSP ‘N’), but all equation open

in Java, OEA - ‘Y’. ModelVision is related to

AnyLogic (similar features).

Maple – developed by Maplesoft, Canada, has

developed a toolbox MapleSim, which partly

understands Modelica models (PM-T, PM-G, and

MOD – ‘Y’). MapleSim comes with a big library of

physical components, basically application-oriented

physical notation, AMOD – ‘Y’.

MapleSim’s modeling libraries are based on physical

components with defined connectors (ports). The

dynamics of a component may be defined by Maple

ODE/DAE notation, Maple notation for any

auxiliaries and conditions, or by basic Modelica

blocks. MapleSim’s modeling concept follows P.

Breedveld’s ideas on port-based modeling [24].

Furthermore, multibody components can be linked

with construction drawings for animation purposes.

Maple also acts as environment and provides

sophisticated DAE solvers, as well as symbolic

algorithms for index reduction (DAE, IR, ENV, VIS,

and FA – ‘Y’). New releases offer event handling

(ED, TEH, SEH - ‘Y’), there exist limited real time

interfaces, RT - ‘(Y)’, and derived equations are open

for access and use in other systems, OEA - ‘Y’.

Graphical state chart notation may come from the

experimental Modelica state chart library, SC-T – ‘N’,

SC-G – ‘(Y)’. Structural dynamic systems can be

controlled from Maple loops, SD – ‘(Y)’, but

functional hybrid modelling would cause user-defined

symbolic manipulations, so FHM – ‘(N)’.

Scilab/Scicos is an open source alternative to

MATLAB / Simulink, developed in France. Scicos is a

graphical dynamical system modeller and simulator

toolbox included in Scilab. So it has nearly the same

features as MATLAB: no equation sorting– MS – ‘N’;

DE, IR, PM-T, PM-G, MOD, SC-T, and SC-G – ‘N’;

SEH, DAE, and VIS – ‘(Y)’, remarkably – SD, FA

and ENV – ‘Y’. Similarly, Scicos has classical

features ED, SEH, and DAE – ‘Y’. The developers of

Scicos started early with a kind of physical modelling

(PM-T, PM-G – ‘Y’). At present extensions are

prepared: Modelica models (text/graphic) – so MOD

and IR ‘(Y)’, and refining the IF-THEN-ELSE and

WHEN clause introducing different classes of

associated events, resulting ‘state chart clauses’ - so

SC-T – ‘Y’. Real-time features are available, so RT -

‘Y’, solver splitting could be done – SSP ‘(Y)’,

derived equations are open for access – OEA ‘Y’.

Structural dynamic modelling and functional hybrid

modelling would be possible at basic Scilab level,

with more or less effort.

Tab. 2: Availability structural features in selected simulators

M
S

 –
 M

o
d

el
 S

o
rt

in
g

E
D

 -
E

v
en

t
 D

es
cr

ip
ti

o
n

S
E

H
 -

S
ta

te
 E

v
en

t

H
a

n
d

li
n

g

D
A

E
 -

 D
A

E

S
o

lv
er

IR
 -

 I
n

d
ex

R

ed
u

ct
io

n

P
M

-T
 –

 P
h

y
si

ca
l

M
o

d
el

li
n

g
 -

T
ex

t

P
M

-G
 -

 P
h

y
si

ca
l

M
o

d
el

li
n

g
 -

G
ra

p
h

ic
s

V
IS

 –
 ‘

O
n

li
n

e’
 -

V
is

u
a

li
sa

ti
o

n

M
O

D
 –

 M
o
d

el
ic

a

M
o

d
el

li
n

g

S
C

-T
 –

 S
ta

te
 C

h
a

rt
 –

M
o

d
el

li
n

g
 -

 T
ex

t

S
C

-G
 –

 S
ta

te
 C

h
a

rt

M
o

d
el

li
n

g
 –

 G
ra

p
h

ic
s

S
D

 –
 S

tr
u

ct
u

ra
l

D
y

n
a
m

ic
 S

y
st

em
s

F
A

 –
 F

re
q

u
en

cy

A
n

a
ly

si
s

R
T

 –
 R

ea
l-

ti
m

e

F
ea

tu
re

s

S
S

P
 –

 S
o

lv
er

S
p

li
tt

in
g

O
E

A
 –

 A
ce

ss
 D

er
iv

ed

E
q

u
a

ti
o

n
s

E
N

V
 –

 E
x

te
n

d
ed

E
n

v
ir

o
n

m
en

t

MATLAB N N (Y) (Y) N N N (Y) N N N Y Y Y (Y) Y Y

Simulink Y (Y) (Y) (Y) N N (N) (Y) N N N N Y Y (N) Y (Y)

MATLAB/

Simulink
Y Y Y (Y) N N (N) (Y) N N N Y Y Y (Y) Y Y

Simulink /

Stateflow
Y Y Y Y N N (N) (Y) N (Y) Y N Y Y (N) Y (Y)

Simulink /

Simscape
Y Y Y Y (Y) Y Y (Y) (N) N N N Y (Y) (Y) Y (Y)

SL

Simscape

Stateflow

Y Y Y Y (Y) Y Y (Y) (N) (Y) Y N Y (Y) (N) Y (Y)

ML/SL

Simscape

Stateflow

Y Y Y Y (Y) Y Y (Y) (N) (Y) Y Y Y (Y) (N) Y Y

ACSL Y Y Y Y N N (N) (Y) N N N N Y (Y) (Y) Y Y

Dymola Y Y Y Y Y Y Y Y Y (Y) (Y) N (N) (Y) (N) N (Y)

Math

Modelica
Y Y Y Y Y Y Y (Y) Y (N) (Y) N (N) (N) N (Y) (N)

MathMod./

Mathemati

ca

Y Y Y Y Y Y Y Y Y (N) (Y) Y Y (N) N (Y) Y

Mosilab Y Y Y Y (N) Y Y (N) (Y) Y Y Y N (N) (N) Y (Y)

Open

Modelica
Y Y Y Y Y Y (N) (N) Y (N) (Y) N N (N) (N) Y N

Simulation

X
Y Y Y Y Y Y Y Y Y (N) (Y) N Y (Y) (N) (Y)

AnyLogic Y Y (Y) (Y) N N N Y N Y Y Y N (N) N Y N

Model

Vision
Y Y Y Y Y Y N Y N Y Y Y Y N N Y N

Scilab N N (Y) (Y) N N N (Y) N N N Y Y Y (Y) Y Y

Scicos Y (Y) Y Y (Y) Y Y (Y) (Y) Y (Y) N N Y (N) Y N

Scilab

/ Scicos
Y Y Y Y (Y) Y Y (Y) (Y) Y (Y) Y Y Y (N) Y Y

Maple N N (Y) Y (N) N N (Y) N N N Y Y N (Y) Y Y

MapleSim Y (Y) (Y) Y Y Y Y Y Y N N (Y) (Y) Y (N) Y Y

Mosilab / Sol / Hydra. Mosilab has been developed

by Fraunhofer in the years 2006 – 2008, designed as

simulator for structural dynamic systems with

Modelica modelling and Dymola-like features. So

Mosilab shows features similar to Dymola, but is

designed for structural dynamic systems which can be

coupled via state charts, so SD – ‘Y’, SC-T – ‘Y’,

SC-G – ‘(Y)’, and comes with open C and C++

models. OEA – ‘Y’. But functional hybrid modelling

would cause a major extension of the translator, so

FHM – ‘(N)’. Unfortunately further developments

have been postponed. Mosilab’s hybrid modelling

components are one of the suggestions for hybrid

extensions in Modelica, for comparison see [14, 15,

16].

Sol (D. Zimmer, F. Cellier, ETH Zürich, [17, 18]) is a

derivative language of Modelica-type and has been

especially designed for the convenient expression and

simulation of variable-structure systems within an

object-oriented, equation-based modelling framework,

very close to Modelica and Dymola – so basic features

coincide with Dymola, especially Modelica

modelling, MOD – ‘Y’. It partly follows the ideas of

Mosilab – hybrid decomposition into conditional

subsequent models – so ‘SD’ – ‘Y’. But as main

extension, Sol offers dynamics model change and

interpretative model generation at runtime, so it offers

functional hybrid modelling in an interpretative

manner, FHM – ‘Y’.

Sol’s intention is to be as close as possible to

Modelica, and Sol’s hybrid modelling components are

one of the suggestions for hybrid extensions in

Modelica. The development of Functional Hybrid

Modelling is in principle independent on Modelica,

but Sol implements some FHM structures.

Hydra / SUNDIALS Hydra is a declarative language

for modelling and simulation of physical systems

using implicitly formulated (undirected) differential

algebraic equations (DAEs) – [20, 21]. The language

provides constructs for definition and composition of

model fragments that enable modelling and simulation

of large, complex, structurally dynamic and hybrid

systems. Currently, Hydra is implemented as a domain

specific embedded language in Haskell. Thus, full

power of a modern functional language is available

(e.g. for meta-modelling) in addition to core

modelling capabilities. Hydra implements concepts of

Functional Hybrid Modelling (FHM, [19]) and is the

first publicly available implementation of an FHM

language.

Hydra allows generating DAE models at runtime, in

any complexity, taking into account changing

causalities, state space changes, and changes in

degrees of freedom. For simulation, the SUNDIALS

DAE solver suite [3] may be used.

It should be noted, that in context with Mosilab, Sol

and Hydra (and MKL - Modelling Kernel Language,

Broman [22, 23]) different developments are

enriching each other - Modelica Extension and

Functional Hybrid Modelling, at present both

‘converging’ at implementation level. FHM may be

seen as correct formalisation of the more intuitive

concept of structural dynamic systems in Mosilab [13,

14].

3.3 Summary Table for Structural Features in

Selected Simulation Systems

Tab. 2 tries to summarise the availability of the

discussed structural features. As in Tab. 1, the

availability of features is indicated by ‘Y’ (‘Y’) and ‘N’

(‘N’); a ‘Y’ in parenthesis ‘(Y)’ means that the feature

is available but complex to use; an ‘N’ in parenthesis

‘(N)’ means, that the feature is yet not available, but

foreseen or way around exists.

4 References

[1] F. Breitenecker, N. Popper, S. Wassertheurer:

"Evaluation and Benchmarking of Tools for

Modelling and Simulation in Engineering - The

ARGESIM Comparisons"; in: "2006 International

Conference on Engineering and Mathematics", J.

Bilbao, A. Olozaga, Y. Ruiz, C. Cabredo (Hrg.);

Publicaciones - Escuela Tecnica Superior de

Ingeneria, Bilbao, Spain (2006), ISBN: 84-95809-26-

5; S. 217 - 223.

[2] S. Pawlik, N. Popper, F. Breitenecker: "A

Classification of Modelling and Simulation

Approaches based on the ARGESIM Benchmarks";

in: "Proc. EUROSIM 2007 - 6th EUROSIM Congress

on Modeling and Simulation", B. Zupancic, R. Karba,

S. Blazic (Hrg.); ARGESIM / ASIM, Vienna (2007),

ISBN: 978-3-901608-32-2; 8 S.

[3] SUNDIALS suite; http://www.llnl.gov/casc/sundials/

[4] F. Breitenecker, N. Popper: "Structure of

Simulation Systems for Structural-Dynamic Systems"

in: "Proc. First Asia International Conference on

Modelling and Simulation", D. Al Dabass, R. Zobel,

A. Abraham, S. Turner (Hrg.); IEEE Computer

Society, (2007), ISBN: 978-07695-2845-8; S. 574 -

579.

[5] F. Breitenecker, F. Judex, N. Popper, I. Troch, J.

Funovits: "Structure of Simulators for Hybrid Systems

- General Development and Introduction of a Concept

of External and Internal State Events"; in: "Proc.

EUROSIM 2007 - 6th EUROSIM Congress on

Modeling and Simulation", B. Zupancic, R. Karba, S.

Blazic (Hrg.); ARGESIM / ASIM, Vienna (2007),

ISBN: 978-3-901608-32-2; 14 S.

[6] F. Breitenecker, N. Popper, G. Zauner: "Structural

Features in Simulation Systems - Evaluation and

Comparison"; in: "Proc. 20th European Modeling and

Simulation Symposium EMSS2008", A. Bruzzone, F.

Longo, M. Piera, R. Aguilar, C. Frydman (Hrg.);

Univ. Calabria, (2008), ISBN: 978-88-903724-0-7; S.

399 - 407.

[7] F. Breitenecker, N. Popper: "Extended and

Structural Features of Simulators - A Comparative

Study"; Simulation News Europe SNE, Vol. 18

(2009), no. 3-4; S. 27 - 38.

http://www.llnl.gov/casc/sundials/

[8] F. Breitenecker, N. Popper: "Classification and

Evaluation of Simulator Features"; in: "Proceedings

MATHMOD 09 Vienna - Full Papers CD Volume", I.

Troch, F. Breitenecker (Hrg.); ARGESIM / ASIM -

Vienna, ARGESIM Report No. 35 (2009), ISBN: 978-

3-901608-35-3; 13 S.

[9] The Modelica Association. Modelica – A Unified

Object-Oriented Language for Physical Systems

Modeling: Language Specification Version3.2, March

2010.

http://www.modelica.org/documents/ModelicaSpec32

_withRevisionMarks.pdf

[10] Principles of Object-Oriented Modeling and

Simulation with Modelica 2.1; P. Fritzson Publisher:

Wiley-IEEE Press (January 22, 2004) ISBN-10:

0471471631 ISBN-13: 978-0471471639

[11] F. E. Cellier. Continuous System Modeling,

Springer, 1991; ISBN 9780387975023

 [12] F. E. Cellier and Ernesto Kofman. Continuous

System Simulation. Springer-Verlag, 2006.

[13] C. Nytsch-Geusen, T. Ernst, A. Nordwig,

P. Schwarz, P. Schneider, M. Vetter, C. Wittwer,

T. Nouidui, A. Holm, J. Leopold, G. Schmidt,

A. Mattes, and U. Doll. MOSILAB: Development of a

Modelica-based generic simulation tool supporting

model structural dynamics. In Proceedings of the 4th

International Modelica Conference, pages 527–535,

Hamburg, Germany, 2005.

 [14] G. Zauner, D. Leitner and F. Breitenecker.

Modelling structural-dynamics systems in

Modelica/Dymola, Modelica/MOSILAB, and

AnyLogic. In Peter Fritzson, Francois Cellier, and

Christoph Nytsch-Geusen, editors, Proceedings of the

1st International Workshop on Equation-Based

Object-Oriented Languages and Tools (EOOLT),

number 24 in Linköping Electronic Conference

Proceedings, pages 99–110, Berlin, Germany, 2007.

Linköping University Electronic Press.

[15] G. Zauner, F. Breitenecker: "Three Structural

Different Modelling Approaches to ARGESIM

Comparison C7 `Constrained Pendulum´ using the

Modelica-Simulator MOSILAB";

Simulation News Europe SNE, 16 (2007), 3; S. 61 -

62.

[16] G. Zauner, N. Popper, F. Breitenecker:

"Modelling Structural Dynamic Systems: Standard

Modelica vs. Mosilab Statecharts"; Vortrag:

MATHMOD 2009 Vienna, Vienna; 11.02.2009 -

13.02.2009; in: "Proceedings MATHMOD 09 Vienna

- Full Papers CD Volume", I. Troch, F. Breitenecker

(Hrg.); ARGESIM / ASIM - Vienna, ARGESIM

Report No. 35 (2009), ISBN: 978-3-901608-35-3; 8 S.

[17] D. Zimmer. Introducing Sol: A general

methodology for equation-based modeling of variable

structure systems. In Proceedings of the 6th

International Modelica Conference, pages 47–56,

Bielefeld, Germany, 2008.

[18] D. Zimmer: Enhancing Modelica towards

variable structure systems. In: Proc. of the 1st

International

Workshop on Equation-Based Object-Oriented

Languages and Tools, Berlin, Germany (2007) 61-70.

[19] H. Nilsson, J. Peterson, and P. Hudak. Functional

hybrid modeling. In Proceedings of PADL’03: 5th

International Workshop on Practical Aspects of

Declarative Languages, volume 2562 of Lecture Notes

in Computer Science, pages 376–390, New Orleans,

Louisiana, USA, January 2003. Springer-Verlag.

[20] H. Nilsson, J. Peterson, and P. Hudak. Functional

hybrid modeling from an object-oriented perspective.

Simulation News Europe, 17(2):29–38, September

2007.

[21] Exploiting structural dynamism for

straightforward simulation of ideal diodes.

G. Giorgidze, H. Nilsson; THESE PROCEEDINGS

[22] D. Broman. Flow Lambda Calculus for

declarative physical connection semantics. Technical

Reports in Computer and Information Science 1,

Linköping University. Electronic Press, 2007.

[23] D. Broman and P. Fritzson. Higher-order acausal

models. In P. Fritzson, F. Cellier, and D. Broman,

editors, Proceedings of the 2
nd

 International Workshop

on Equation-Based Object-Oriented Languages and

Tools (EOOLT), number 29 in Linköping Electronic

Conference Proceedings, pages 59–69, Paphos,

Cyprus, 2008. Linköping University Electronic Press.

[24] P. C. Breedveld Port-based modeling of

mechatronic systems. Mathematics and Computers in

Simulation (MCS), vol.66/2-3, 2004,

pages 99 - 127

http://www.modelica.org/documents/ModelicaSpec32_withRevisionMarks.pdf
http://www.modelica.org/documents/ModelicaSpec32_withRevisionMarks.pdf

