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Abstract

Epidemiological Models are basically composed of medical, demographic and
spatial features of arbitrary complexity depending on available data and purpose of
the simulation. With increasingly subtle structures the formulation and implemen-
tation becomes more and more challenging. Additionally the performance limit of
simulators, applications and hardware interferes with the models fidelity. The pur-
pose of this investigation is to find and test new approaches for implementing and
simulating systems with large data volume and complexity. Some approved ap-
proaches/concepts involve matrix based programming languages, parallelisation,
cellular automata and agent-based systems. Our goals are to swap costly calcu-
lations to equivalent methods with lower time penalty, make use of fundamental
concepts such as databases during simulation or to facilitate access to advanced
programming techniques like GPGPU (computing on graphics devices). This con-
tribution presents and evaluates different approaches towards implementing large
spatial systems using cellular automata and agent-based approaches. The dis-
cussion is based on a spatial model for simulating the spread of two competing
diseases (serotypic shift).
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1 Introduction
Epidemiological models and simulations exist in vary-
ing forms. A very basic and imprecise yet often suffi-
cient and used method for simulating epidemic scenar-
ios or predicting patterns in the spread of diseases is by
statistical analysis and evaluation of data.

The most common mathematical model for simulat-
ing spread of diseases is the classical SIR (susceptible-
infected-recovered) ODE (ordinary differential equa-
tion) model or extensions (e.g. by spatial factors) de-
rived from this dynamic approach. A population is
stratified into susceptible, infected and recovered sub-
populations and the accumulated flow between those
groups is described by a system of ODEs with non-
linear respectively linear reaction terms.

A more detailed demographic resolution by age or gen-
der for example requires additional equations, which
model the dynamics of the resulting sub-populations.
Since such systems of ODEs become very complex, can
no longer be treated with analytic methods, are unsta-
ble and difficult to parametrise, alternative approaches
like agent-based models can be used to introduce finer
grained systems.

When simulating spatial dispersion of pathogens it is
necessary to use partial differential equations, which
require numerical solution. Alternatively explicit top-
down approaches like cellular automata can be used
to achieve the same dynamic behaviour and simulta-
neously allow interweaving with agent-based compo-
nents.

Furthermore important epidemiological factors like
competing pathogens or different disease stages require
the simulation of stochastic processes (e.g. Markov
chains).

Often simpler approaches are chosen because some
of those techniques are mathematically hard to han-
dle or development is time-intensive. Furthermore if
the model becomes more advanced, the implementa-
tion tends to become more complex so that it is neces-
sary to improve the implementation in order to reduce
the calculation time or memory consumption. But even
a slightly more dedicated implementation can be very
useful to reduce the time overhead. On the other side re-
cent developments brought easier access to GPGPU and
multi-core processors, which makes it possible to per-
form multiple or many operations in parallel and thus
reduce the calculation time drastically.

2 Virtual Epidemiological Model
The virtual model simulates individual and unique per-
sons of a population based on demographic data [1].
According to the data individuals are generated with
specific features like age, gender, health, environment
bonus, residence, family, profession, etc.

A second data set gives information about one or more
disease pathogens. This data source must define the
likelihood of infection and recovery with the same res-

olution as the demographic data. Furthermore the com-
petition between multiple pathogens and its dynamics
must be clearly defined.

The resulting system is being iterated over time and
defines multiple phases of interaction within different
groups of the population (p.e. within a family, at work
or through social classification, etc.). Furthermore such
groupings must not unexceptionally be static and pre-
defined. Interaction can also happen according to ge-
ographic habits of individuals or the locations of their
domiciles, working places or schools.

The previously demanded structure of the model is
highly predestined for an agent-based approach. Ev-
ery person of the population has individual features
which are (randomly) generated from statistical data.
Additionally complex and irregular interactions depend
on the properties of the individuals and stochastic pro-
cesses.

If interaction depends on spatial distances, each agent
must maintain a geographic position and a system for
integrating this information into the process of interac-
tion (i.e. infection).

3 Implementing the Agent-Based System
A straight forward method for storing information per
agent in a program is by using arrays or matrices. The
data must be imported/generated at initialisation from
CSV files, spreadsheets or databases, which is often a
time consuming operation. Since all data within an ar-
ray must usually be of the same data type (boolean, inte-
ger, double, string or even bitwise) there is a large mem-
ory overhead if one single matrix is used. For example
in MATLAB a matrix that holds 1 million agents with 5
features each costs 40MB of RAM if stored in double;
if 3 of the 5 columns can be stored as unsigned 8-bit in-
tegers (uint8), memory consumption is less than the
half. Many programming languages provide additional
data structures, which allow to combine fields of differ-
ent data type. But such extended data structures often
exhibit larger read and write times.

Another very intuitive approach is by object-oriented
programming. Agents can easily be implemented as
objects or as an array of objects. Each instance of
the agent-class stores its own properties and provides
the methods that are used for interaction. The object-
oriented approach is practical to implement but does not
perform very well in terms of calculation time.

What happens if systems become really large? Sup-
posed that the number of agents and features as well as
concurrently running tasks requires that the operating
system swaps memory to the hard-disk the calculation
time increases dramatically. In this case it might be of
advantage to deliberately release some components to
the hard-disk (compare section 5). It is very difficult to
decide which data should be moved to to the hard-disk
and when and in what manner this should be done. Fur-
thermore if specific data is required for fast access, it is
necessary to implement fast search algorithms and data
structures.



Some of these requirements are achieved by typical
database applications. They exhibit concepts like mem-
ory hierarchy, caching, simultaneous access to data,
high capacity, indexing and much more. The process of
initializing data can be avoided by restoring previously
dumped snapshots of a database or by using temporary
tables.

3.1 Technical Details of an External Database Ap-
proach

We connect to the PostgreSQL database management
system from a simple C++ program using the pqxx li-
brary on a Linux desktop computer.

• Database Connection: It is important to connect
to a local database via Unix domain sockets be-
cause TCP connections are much slower.

Reads and writes from and to tables are performed
as atomic operations. That means that if a so-
called transmission fails or aborts no data will be
lost or left behind incomplete.

• Queries: All queries and operations such as the
change of a state of an agent must be implemented
in SQL. In contrast to pure SQL PL/pgSQL is a
procedural language, which allows to define func-
tions and variables within the database.

• Database Optimisation: PostgreSQL provides
indexing, which allows to make search operations
faster, and an analyse functionality, which cleans
up the database and updates indices.

• Temporary Databases: It is possible to use tem-
porary databases during simulation. No changes
will be made to the actual tables and all results are
discarded when terminating the connection.

• Storage: If the model is small enough the database
can be hosted in RAM. This can be done by us-
ing file-systems like ramfs or tmpfs. This allows
to use the advantages of a database layout and ex-
perience lower access times (section 4.2.2) at the
expense of a more complex installation. For larger
systems and if continuity is important a RAID sys-
tem might be the right choice.

• Parallelisation: A database allows multiple con-
nections so that reading and writing from and
to the database can be simultaneously depending
on the exact operations and rules defined in the
database.

• Visualisation: Visualisation must be done in the
main program and requires copying data from the
database into memory or hard-disk space.

3.2 Technical Details of an Embedded Database
Approach

The Oracle Berkeley Database System exhibits the fol-
lowing features:

• Programming Interface: The Berkeley Database
is written in C and provides interfaces (libraries) to
nearly all common programming languages (C++,
C#, Java, Python, Perl, etc.). This database system
is used by many popular applications and operat-
ing systems.

• Database Connection: No inter-process commu-
nication is required since the database system is
integrated into program as a library and uses the
same address space. This makes the embedded
database approach very fast compared to external
databases.

Like in other database systems, transactional data-
management is provided.

• Queries: This database system does not provide
a SQL-API. All data lookups must be known and
programmed in advance. There is no search by
value, all lookups must be managed through keys
(key-data pairs).

• Storage: A database file must be specified at ini-
tialization.

• Parallelisation: The Berkeley Database supports
many parallel threads and a “two-phase” locking
system.

4 Modelling Spatial Dynamics
There are two points of attack for introducing spatial
dynamics. On the one hand interactions occurring in
working places, schools, universities or wherever many
individuals come into contact can be modelled as cellu-
lar automata. This means a switch from the agent-based
domain to cellular automata (hybrid modelling [2]). On
the other hand the global system can be arranged with
spatial information. This involves defining the location
of a family’s home, working places etc. at initializa-
tion based on statistical data. The resulting information
can then be used to generate/simulate a transport infras-
tructure, congested areas etc. Geographic breakup is an
important factor since it represents a very natural con-
dition.

4.1 Implementing Spatial Subsystems

Aggregated interaction within temporary groupings can
be modelled using the classical ODE-system or by
stochastic means. A more subtle approach is by cel-
lular automata or weighted interactions combined with
stochastic features.

A non-aggregated method requires more calculation
time and thus should be optimised. Sub-simulations
in cellular automata are initialized by placing interact-
ing agents on a two dimensional domain, where they
move and interact during simulation [3]. Accelerating
cellular automaton simulations can happen through par-
allelisation on different levels. On the one hand the
domain can be sliced into multiple equal sized sub-
domains. Agents or interaction processes which leave a
sub-domain are passed over to the adjacent sub-domain



using traditional message passing systems. The other
approach is easier to implement and features a parallel
execution of code on a lower level by running multiple
independent cellular automata in parallel.

An implementation in MATLAB of the first approach
can use PVM (parallel virtual machine) and a free
parallelisation toolbox [4, 5] as interface to the par-
allelisation technique. With Java or C++ threads or
processes can scatter the calculation effort for differ-
ent sub-domains or automata to different processors or
cores. The typical matrix structure of cellular automata
also favours an implementation of the first approach on
graphics devices using OpenCL, CUDA, etc.

The development effort for accelerations using threads
or graphics devices is of course greater. Early tests with
the MATLAB-PVM approach delivered nearly linear
speed-up, which means that four processor cores de-
liver the simulation in one fourth of the time for one
cellular automaton. We currently work on a cellular au-
tomata parallelisation with MATLAB and PVM, which
is compatible to an agent-based model [6]. The follow-
ing (incomplete) listing shows the simple modifications
that are necessary to scatter calculations of sub-domains
to multiple virtual machines [7]. The installation on
the other side is slightly more complex since it involves
compilation and linking of the interface written in C.

pid=dpparent;
if isempty(pid) % MAIN PROGRAM
tid=dpspawn(hosts,’thisfile’);
dpscatter(geometry,tid);
dpsend(tid,tid);
u=dpgather(tid);
else % PARALLEL EXECUTION
grid=dprecv(dpparent);
tid=dprecv(dpparent);
for all iterations
if POS<SIZE
dpsend(grid(end,:,:),tid(POS+1));
end
if POS>1
northborder=dprecv(tid(POS-1));
dpsend(grid(1,:,:),tid(POS-1));
end
if POS<SIZE
southborder=dprecv(tid(POS+1));
end
end
dpsend(u,dpparent);
end

A C/C++ implementation typically uses arrays of point-
ers to access different layers of the grid. Each layer rep-
resents one of the possible moving directions (4 or 6 for
rectangular respectively hexagonal grids) respectively
a position within a cell. In order to improve the execu-
tion time of the streaming operator, it is possible to shift
the layers sidewise by swapping pointers to the rows or
columns of these layers. This allows further to process
different layers in parallel, which means that this is a
third possible approach for parallelisation within a cel-
lular automaton.

// allocation:

int** gridN = new int*[gridsize];
for (int y=0;y<gridsize;y++)

gridN[y] = new int[gridsize];
...
// parallel streaming:
int* Nbuffer = gridN[0];
for (int y=0;y<gridsize-1; y++)

gridN[y] = gridN[y+1]; // up
gridN[gridsize-1] = Nbuffer;

int* Wbuffer = gridW[gridsize-1];
for (int x=gridsize-1;x>0; x--)

gridW[x] = gridW[x-1]; // left
gridW[0] = Wbuffer;

4.2 Introducing Geographic Information in the
Global System

If the global agent-system is to be equipped with spatial
dynamics each agent must store its current position (co-
ordinates), which leads to two more (double) variables
for each agent. The model must provide the function-
alities to perform motion and interaction depending on
the distance between two agents.

For example if an infection can take place if the distance
is smaller then r, it is necessary to find all neighbouring
agents within radius r of an agent. Therefore the dis-
tance of each agent to every other agent must be taken
into account for each time step. It is clear that this oper-
ation is very time consuming (compare [8]). A further
very complex problem are path-finding algorithms, if
agents should move to specific locations [9] - for exam-
ple from home to the working place.

We discuss two completely different approaches for im-
plementing such dynamics efficiently.

4.2.1 Spatial Dynamics Using GPUs

A hypothetical scenario was tested on GPUs using
CUDA and compared with a native C++ implementa-
tion [10]. The iterative test model involved moving
agents and static ”signposts” on a two dimensional do-
main. According to the signposts direction-vector, the
agents change their moving direction.

It is very important to understand that just implement-
ing an algorithm in a straight-forward fashion on high-
performance hardware does not necessarily improve
the runtime of the program. This is especially true for
the test model. The crucial point of the system is that all
agents must find their neighbouring (radius r) signposts
(search algorithm). This search can be done by going
through all signposts for every agent (linear search). A
much faster approach is by using an uniform grid search
method. This means that the domain is divided into
a grid of (r × r)-sized cells thus limiting the lookup-
area of every agent to 4 (“neighbouring”) cells. Fur-
thermore an index-array stores the index or identity of
the first and last signpost within each cell and thereby
additionally speeds-up the search process. Both search
approaches were compared in a GPU and CPU imple-
mentation (Fig. 1), showing that there is a time differ-
ence of multiple orders of magnitude.

In contrast to an implementation in MATLAB or C/C++



Fig. 1 log-log scaled plot of time needed for simulating
a system with a given number of agents [10]. The fig-
ure shows that the CPU implementation and the linear
search approach are orders of magnitude slower than
the GPU respectively grid search approach.

the architecture of the graphics device must be taken
into account when building an algorithm. CUDA for
example provides access to different memory spaces,
which exhibit certain advantages and drawbacks con-
cerning life time, access times and interchangeability.
Furthermore the significant time penalty for exchanging
data with the CPU or main memory should be avoided,
thus making it necessary to avoid connecting to dif-
ferent sub-models concurrently running on the CPU.
This is of course a great drawback and makes GPU
programming a challenging task (advanced program-
ming technique). The following listing shows parts of
the CUDA implementation for finding an agents neigh-
bouring signposts within a certain neighbouring cell
with cell-index (idxX,idxY) (linear search within
a grid cell).

__device__ int searchCell(float px,float py,
int idxX,int idxY,float &vx,float &vy) {

int vacc = 0; // number of acc.-vectors
// load signpost indices from index array
// into (fast and temporary) texture memory:
int2 idx = tex2D(texSPIndices, idxX, idxY);
// find signposts within radius:
for (int i=idx.x; i < idx.y; i++) {
// load required signposts:
float4 sp = tex2D(texSignposts,

i % (1<<16), i / (1<<16));
// calculate distance to signpost:
float dx = sp.x - px;
float dy = sp.y - py;
float dist = dx*dx + dy*dy;
// add signposts direction vector
// to agents velocity vector
if ( dist < cdRadiusSqr ) {
vx += sp.z;
vy += sp.w;
vacc++;
}
}
return vacc;
}

In contrast to CPU implementations it is possible to
implement real-time interactive visualization using
OpenGL.

Fig. 2 Interactive real-time visualization of a GPU sim-
ulation. Red agents move fast; green agents move
slowly. Signposts and their directions are shown in
blue.

4.2.2 Spatial Dynamics Using the External
Database Approach

The PostgreSQL database management system is pro-
vided with a highly optimised extension (PostGIS)
for storing and manipulating geographic and geomet-
ric information. PostGIS adds support for geometry
columns, which store geometric information in a bi-
nary format including cartographic projections. Geo-
metric objects include points, lines, circles, polygons,
etc. Additionally a wide range of functions abstract
queries for the distance between two objects, whether
one object lies within another, to calculate the area of
an object etc.

In order to improve queries on geometric objects, ge-
ometry columns can be indexed using geometric in-
dexing, which involves bounding boxes or so-called R-
trees [11]. Accordingly it is not necessary to imple-
ment search algorithms or data structures. Nevertheless
it is important to be familiar with SQL since choos-
ing the right way to implement a query can be rather
tricky but it is necessary to avoid time overhead com-
ing from sequential scans or badly designed queries.
Of course the overall performance is lower than for a
very well-designed C++ or GPU approach. Depend-
ing on the programmers taste SQL can make things ei-
ther easier or worse. Analysis tools like EXPLAIN and
ANALYZE can be used to calculate the exact time con-
sumption and operations for each query, which helps to
improve the code. The following (badly designed) SQL
query was used in the test model to perform interaction
in working-places.

CREATE OR REPLACE FUNCTION interact_work()
RETURNS
integer AS $$
BEGIN
UPDATE agents
SET state = (CASE

WHEN rand < prob.P_02A THEN 1



WHEN rand < prob.P_02A+prob.P_02B THEN 2
ELSE 0 END)

FROM
( SELECT numwork.workingplace AS work,
(1-(1-P02A)ˆnumwork.NumA)*

(1-P02B)ˆnumwork.NumB AS P_02A,
(1-(1-P02B)ˆnumwork.NumB)*

(1-P02A)ˆnumwork.NumA AS P_02B
FROM
( SELECT
count((SELECT ag.id

WHERE ag.state = 1)) AS numA,
count((SELECT ag.id

WHERE ag.state = 2)) AS numB,
ag.workingplace AS workingplace
FROM agents AS ag
GROUP BY ag.workingplace
) AS numwork
) AS prob,
random() AS rand
WHERE prob.work = agents.workingplace AND
agents.state = 0;

RETURN 0;
END;
$$ LANGUAGE plpgsql;

The main program is written in C++ and provides ac-
cess to the database through the pqxx library. This al-
lows to do automated testing, Monte Carlo analysis or
comparison with other approaches. Graphical output
can be generated in parallel to the execution of SQL
queries. We store all geometric information in the SVG
file format and then use a script to convert the vector
graphics to a bit-mapped image format (PNG) using
ImageMagick and finally create a video using FFmpeg.

If the database stays small enough, it can be com-
pletely hosted in memory. This is done by mount-
ing a file-system in RAM using ramfs at boot time.
A PostgreSQL table-space must be defined so that
all databases within this table-space are stored on
the mounted virtual device. After the file-system is
mounted and before the simulation starts a database lay-
out must be restored from dump. Therefore at initial-
ization of the simulation no new set of agents must be
generated. Since memory consumption can be rather
high it is necessary to use computers with large mem-
ory and fast disk access (RAID), which makes this ap-
proach rather complicated or expensive.

4.2.3 Spatial Dynamics Using the Embedded
Database Approach

In contrast to the PostgreSQL system, the Berkeley DB
system does not provide predefined functions or ge-
ometric data types. All lookups must be built upon
hashed searches or B-trees. This fact places the em-
bedded database approach somewhere between a native
implementation and a full-featured database approach.

The remaining benefits compared to a native imple-
mentation are the caching infrastructure, storing to the
hard-disk, controlled (locking) simultaneous access
to the data and two methods for finding data by keys
(namely hash-search and B-tree search).

Datasets can either be loaded at start-up or generated
before the actual simulation. The library features rou-

tines for retrieving, setting and updating datasets. All
those operations take a pointer to a variable and copy
or change the contents of this variable. All updates
to a database can be flushed to disk by committing the
changes.

Therefore, in contrast to the external database approach,
no SQL statements must be composed, transmitted
and parsed and the retrieved data must not be copied
from the database engine to the program but can be di-
rectly accessed through pointers. Accordingly it is
much easier to handle large database entries.

At the time of writing the performance comparison
was not yet fully implemented but if this approach is
equipped with spatial indexing (p.e. index tables, uni-
form grid approach), a great performance boost in com-
parison to the external database implementation can be
expected.

5 Results and Conclusions
The main result from our comparison is that there are
several techniques that provide high performance. The
difficulty lies in accessing those techniques. That is
for example the CUDA language, which requires to
understand the physical condition of a graphics de-
vice, or SQL, which requires analysing and optimising
the resulting queries. Furthermore setting up a work-
ing CUDA environment or a high-performance Post-
greSQL environment is not straight forward.

The benefit of existing search algorithms in the PostGIS
approach could not be used efficiently since the design
of fast SQL queries can be rather complicated and the
time penalty for transmitting queries and results out-
weighs the great performance of these algorithms.

On the other hand the GPGPU approach proved to be
rather static, since it is a closed system that does not
allow (efficient) communication with the CPU.

A threaded C++ implementation proved to be the most
flexible approach but does of course not deliver the
same degree and level of parallelisation as the GPU ap-
proach. The main advantage is the possibility to con-
nect to databases, graphics devices and image process-
ing tools from one basic program.

Furthermore an embedded database for example with
the Berkeley Database system could facilitate the data
management in a native implementation.

In a next step it would be interesting to analyse a com-
bination of those approaches. A potential implementa-
tion of the test model could for example host the large
datasets in an embedded database and perform appro-
priate calculations on the GPU. In order to optimise
the performance of such a system further benchmarks
and tests with all approaches and techniques would be
necessary. Additionally an event-driven scheduling sys-
tem could help to avoid unnecessary calculations where
possible. For example if only a random subset of the
agents is involved in certain instances of a periodic ge-
ometric operation.
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