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Abstract  

Standard approaches to simulating epidemics of infectious diseases include the 
classic SIR-model and agent based simulations. Another interesting application 
for modelling and simulation are studies of the dynamics of whole parts of 
health care systems and their reimbursement schemes. We show how to 
integrate the transmission of infectious diseases into a model of this type. It is 
agent based and consists of three main agent types: Patients, Medical Providers 
and Medical Problems. The latter represents different diseases which patients 
can contract. Each patient implements a statechart for every medical problem 
type. These statecharts model the random generation of new diseases and 
corresponding medical problem objects which control disease progression and 
the treatment pathways a patient takes. A central “Health Market” object 
manages provider search of the patients. As an example, we integrate influenza 
as an infectious disease into the model with a separate object type 
“InfluenzaEpidemic” that stores the characteristics of every new epidemic 
during simulation time. Transmission of the disease takes place between agents 
which are connected by a network based on spatial relations. Each agent stores 
his past infections so he does not get the same virus strain twice. Experiments 
show that this resembles the behaviour of SIR-models and that this model can 
provide insight into the impact of epidemics on the utilization of the health 
service system and its reimbursement. 
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1 Introduction 

Infectious diseases and epidemics are a major topic of 
health services research. Unlike chronic illnesses 
which are often caused by general morbidity, an 
unhealthy lifestyle or aging, an epidemic spreads 
through social contacts between humans and affects 
people of all age groups, especially children. 

Infections create a positive feedback loop which 
dominates the system until not enough susceptible 
people remain to allow further spreading of the 
disease. New cases can emerge dramatically in a short 
period of time and lead to organizational problems for 
society (capacity of medical providers, absenteeism at 
work etc.) as well as increased mortality. 

Dynamic models of infectious diseases have a long 
tradition. One of the most famous is the SIR-model of 
Kermack and McKendrick which separates the 
population into homogenous compartments of 
susceptible (S), infected (I) and recovered (R) 
individuals. However, such global models ignore 
spatial effects and the possible behaviour of 
individuals [1]. 

In agent based simulation, the infectious disease 
spreads locally through interaction of agents which 
represent individuals. Approaches reach from 
modelling contact networks between agents [2] to 
explicitly integrating submodels of households and 
workplaces [3], but to our knowledge none of the past 
modelling studies implemented structures of the health 
services system, like service providers (e.g. 
physicians) and their reimbursement. 

In this study we show how to integrate an epidemic 
influenza model into an existing agent based 
framework for modelling outpatient health care and 
effects of different reimbursement systems in Austria 
[4]. In the original model people develop medical 
problems with certain probabilities, but it does not 
contain reasons for the emergence of diseases (like 
physiologic attributes of the agents, or interrelation of 
illnesses between different agents as in the case of 
infectious diseases). However, it is possible to add 
these features to the existing model structure. 

2 Methods 

2.1 Model of the Health Service System 

The basic model – implemented in AnyLogic 6.5.0, an 
object-oriented multi-paradigm simulator from XJ 
Technologies, based on the Java programming 
language - consists of three main agent types: 
“Patients”, “Medical Providers” and “Medical 
Problems” (typical medical problems are, for example, 
acute diseases like influenza or chronic health 
problems like hypertension). The main idea is that 
patients randomly develop new medical problems. 

 

2.1.1 Patients 

We model a patient population which is spatially 
distributed on a map of Austria. The simulation 
initialises each patient inside a polygon symbolizing 
the Austrian border. 

It was not possible to do simulations of eight million 
agents, as would be Austria’s population, because this 
consumed too much memory. With fewer agents the 
distances on the map between patients and medical 
providers become unusually large. One has to pay 
attention to this problem. Additionally the ratio of 
medical providers and patients must be similar to the 
real ratio. For example for 10.000 patients we chose to 
model 150 general practitioners. 

Patients in the model have age and sex as variables. 
They are initialised according to the corresponding 
distributions from official statistics. The model uses 
these variables to calculate the dying probabilities of 
each patient, as the population changes dynamically. 

Usually the generation of diseases (and probably also 
treatment and reimbursement) would depend on age 
and sex too. However in the case of modelling just 
influenza we ignore the influence of both. 
Realistically the immune answer is weaker for 
children and the elderly. With reliable data available 
the model could incorporate this fact easily. 

Each patient implements a statechart for every type of 
medical problem. The simplest version of these 
statecharts would have two states, one where the agent 
does not have the medical problem, and one where he 
has actually developed it and has not recovered yet 
(the according statechart for influenza is shown in Fig. 
1). However, these statecharts could be more 
complicated, for example if the medical problem can 
start in different disease stages. 

In general the modelling of the development of each 
disease with a simple statechart reflects the idea that 
the main fact that is important at the patient level is if 
he or she has this specific disease or not. It is not 
necessary to implement further information about the 
diseases, their progression and their treatment in the 
patients themselves, but in own medical problem 
objects. 

2.1.2 Medical Problems 

The medical problem objects implement specific 
information about the disease, for example disease 
progression and possible treatment pathways in the 
healthcare system, with help of statecharts. They are 
modelled as agents because in AnyLogic just agents 
have message passing features that we use for the 
medical problems. When the patient develops a 
medical problem (the corresponding statechart leaves 
the state where the agent does not have the disease), 
he is assigned an instance of the specific problem 
type.  



 

Fig. 1 Statechart of influenza infection inside the 
patient object. Collection variable for past infections 
and object influenza [..] (which stores an object of 

type Influenza when an infection takes place). 

The problem classes reflect the idea that each disease 
has its own attributes and that disease progression and 
treatment pathways are characteristic for different 
illnesses.  

A patient infected with influenza, for instance, would 
develop the need for a first consultation from a 
general practitioner. After this consultation that would 
provide him with medical services or medication, he 
might need a blood test at a laboratory (for checking if 
it is really an influenza infection) and optionally a 
second consultation. 

In the model a “Need” statechart maps these 
possibilities in the form of one or more treatment 
pathways. Each state symbolises that the patient needs 
consultation of a medical provider. Additionally it 
contains information on the possible provider types 
(for example a consultation in the treatment pathway 
could be possible at a medical provider of type general 
practitioner or of type internist) and on “service 
packages”. Each service package contains a list of 
services. At consultations the medical provider 
accounts for the services of exactly one service 
package. 

As an example, service package 1 could contain just 
the usual lump compensation, whereas service 
package 2 would contain additionally an intramuscular 
injection. Different service providers (for example of 
different types) can choose different service packages 
for the same disease. 

2.1.3 Medical Providers 

The medical provider agent class represents all 
medical providers that have a contract with public 
health insurances in Austria, for example physicians, 
laboratories or other specialists working in health care. 
The “type” parameter in this class indicates the 
particular type of the provider (e.g. general 
practitioner, internist). 

Additionally there can be parameters that influence 
treatment decisions of providers. In the case of 
influenza, not every general practitioner or internist 

might automatically prescribe neuraminidase 
inhibitors (like Oseltamivir). Furthermore certain 
medical providers might not be capable of providing 
some services, for example physicians that do not 
have a device for sonography would not offer 
sonographies to their patients. Further iterations of the 
model could handle this with a list of possible services 
for every medical provider. 

For handling of their patients providers have two 
queues with different priorities, where the patients can 
register themselves: “queue” and “queueToday”. 
Medical Providers treat all patients in “queueToday” 
on the same day and before all patients in the normal 
queue. This is important for modelling diseases where 
emergencies can occur. Each queue is served 
according to the First In, First Out (FIFO) principle. 

Providers have their working capacities for each day 
of the week stored in an array called “workingFor”. In 
base run we set the capacity per day (integer values) to 
be uniformly distributed on the interval [5, 10]. The 
working capacities signify how many patients a 
provider can treat per day. 

2.1.4 Patient-Provider Interaction 

Medical providers and patients are spatially randomly 
distributed on a map of Austria. With appropriate data, 
distributions that allow agglomerations (regions with 
higher agent density) would be possible too. 

In reality several criteria influence patient’s provider 
search. To keep it simple we just use the provider’s 
distance to the patient to determine the patients 
preferred provider of a particular provider type. 
However patients do not search directly for a provider, 
but they send a message with the particular provider 
type that they want to consult to a global 
“HealthMarket” object. This object returns a provider 
of the appropriate type with an acceptably small 
distance to the inquiring patient. 

Further model iterations could implement far more 
complicated provider selection strategies just by 
substituting the “HealthMarket” object. This would 
allow a real “market” situation where on one hand 
patients have a need and on the other hand providers 
offer different treatment styles and capacities for 
treating patients (as the required time might be a 
factor in selection of a provider). Thus we suggest 
further research on factors influencing patient’s 
selection of medical providers. 

In the model, patients store providers that they have 
found through “HealthMarket” as their preferred 
providers. They will just consult another provider if 
their preferred one cannot treat them with the desired 
priority. 

If patients have a need for treatment and have chosen 
a particular provider they register in one of his service 
queues. Medical providers will treat people from their 
queues until they reach their daily limit as given in 



“workingFor”. After treatment the patient receives a 
message that he has been treated and all statecharts of 
his medical problems that need a consultation of this 
provider type can transit to the next state in their 
treatment pathway. 

2.2 Implementation of an Epidemic Model 

The easiest way to implement influenza epidemics 
into the model would be to let patients randomly 
develop influenza with probabilities dependent on the 
time of the year, as most cases of influenza occur – at 
least in Austria – in winter during the first weeks of 
the year. For a model that concentrates mainly on 
reimbursement and considers many different diseases 
this is a useful approach. 

However, in this paper we want to couple the model 
with a classic SIR-type epidemic model. Therefore an 
additional object type “InfluenzaEpidemic” represents 
particular influenza epidemics with different virus 
strains. Each time the event “startEpidemic” is 
scheduled it creates a new instance of the epidemic. 

The epidemic object could implement an SIR-model 
with the well-known differential equations, which are 
shown in Eq. (1). 
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As the agent part of the model should simulate at least 
the progress of the disease and its treatment for each 
agent individually, we do not need the part of the 
differential equations where infected patients recover, 
so the continuous equations would just control the 
new infections of agents. 

Tab. 1 Timeouts of state transitions between 
consecutive states of disease progression (Asymp.Inf. 
= AsymptomaticInfectious). The transition to the state 

Symptomatic takes place after one day. The other 
timeouts are uniformly distributed. 

Original state Destination Timeout 

Asymptomatic Asymp.Inf. uniform(0, 2) 

Asymp.Inf. Symptomatic 1 

Symptomatic NonInfectious uniform(3, 5) 

NonInfectious Final State uniform(4, 9) 

 

This coupling has serious disadvantages. For one, the 
performance is weak because all event conditions in 
the model are tested at each step of the differential 
equation solver. Furthermore, the model has to pick 
susceptible agents randomly to infect them 

accordingly to the change dI/dt. Of course this change 
is continuous, but agents can only be infected one by 
one. Altogether this is not a natural solution. 

Therefore (and for reasons described in Section 1), we 
have chosen to incorporate spatial relations and 
individuality of the agents for the disease 
transmission. The statecharts inside patients which 
model disease generation consist of the states 
“Susceptible” and “Infected”. The state “Recovered” 
is implicitly modelled because a collection variable 
stores past influenza epidemics that infected the agent. 
Agents develop immunity against all influenza virus 
strains they have been infected with. 

The influenza disease object implements both a 
statechart that models disease progression and a 
statechart that controls the treatment pathway. The 
disease progression states are: Asymptomatic (the 
patient is infected, but has no signs of infection and 
cannot infect others), AsymptomaticInfectious (the 
patient can infect others, but has still no signs of 
infection), Symptomatic (the patient develops 
symptoms and notices his disease) and NonInfectious 
(the patient still has symptoms, but is not infectious 
anymore). The timeouts until state transitions are 
shown in Tab. 1. 

 

Fig. 2 Statechart of the disease progression of 
influenza. Patients are not instantaneously infectious. 

Just in the infectious state (asymptomatic and 
symptomatic) they may infect other individuals. 

Patients potentially transmit the disease as long as 
they are in state “Infectious” of the influenza 
progression statechart. A cyclic event – with a 
uniformly distributed timeout between zero and two 
days – sends a message with a reference to the 
particular influenza epidemic object to another person 
that is connected with the transmitter. The connections 



in the model form a small-world network, i.e. most 
connections link nearby agents, but some are random. 
Each agent has 20 connections, 95% of which connect 
neighbours. 

An important parameter of each epidemic is the 
infectivity. We model infectivity as the probability of 
a successful infection if a susceptible patient receives 
an infection message. The default value for infectivity 
is 0.05, which means that 1 out of 20 infection 
messages lead to an actual infection. 

There are three different possible treatment pathways: 

1. The patient has one consultation with a 
general practitioner. The general practitioner 
receives a lump compensation, and he may or 
not may prescribe neuraminidase inhibitors. 

2. The patient waits longer than 3 days for his 
first consultation. Then he deletes himself 
from the queue of the general practitioner and 
just waits until the end of his influenza. 

3. At the first consultation the general 
practitioner takes a blood sample and sends it 
to a laboratory for a test for the influenza 
virus. After this the patient comes to the 
general practitioner for a second consultation. 

 

Fig. 3: Infected individuals of two consecutive 
influenza epidemics. 

 

Fig. 4: Patients in the queue of general practitioners – 
average and maximum queue sizes during the two 

influenza epidemics. 

Note that these treatment pathways are by no means 
empirically attested; they are just for illustrative 
purpose. For example, prescription of antibiotics 
might be far more common in influenza-like-illnesses 
than prescription of neuraminidase inhibitors. 
However antibiotics have no effect on the influenza 
virus, whereas the latter can shorten the length of the 
infection by about a day on average [5]. Therefore the 
patient transits in the disease progression statechart 
one day faster if he or she receives neuraminidase 
inhibitors. 

The java class “Services” creates a HyperSQL 
database at runtime. Additionally it stores prices of 
services and handles writing of services to the 
database (together with date of service, patient id and 
id of the provider). The method servicesCosts( long 
providerId, Service service) in the Services class 
calculates total costs per service type for a particular 
provider from the database. For most services this 
gives the amount of services multiplied with the 
service price, however lump compensations are 
counted at most once per quarter, provider and patient. 

3 Results 

Simulations took place with 10.000 patients. The base 
run shows the typical SIR-type behaviour (Fig. 3). 
Here the second epidemic took place one year after 
the first. Additionally, the output incorporates average 
and maximum queue sizes (Fig. 4) and reimbursement 
of the providers (of course this reimbursement is just a 
partial one as it results from only one disease). 

 

Fig. 5: Infected individuals of one epidemic if patients 
do not develop immunity. Damped oscillations occur. 

If the agents do not store the epidemics they have 
already had (essentially an elimination of the 
“recovered” state) we get a different picture with 
oscillations like in Fig 5. In general, the maximum 
queue sizes of the general practitioners are a few times 
the average queue sizes. 

The cost information for general practitioners (Fig 6. 
and Fig 7.) and laboratories shows that in the second 
scenario overall costs rise almost linearly over the 
whole simulation time, whereas in the base run the 
rise of costs is by far not so tremendous. 



 

Fig. 6: Base run, development of overall costs for 
lump compensations and neuraminidase inhibitors 

during two influenza epidemics. 

 

Fig. 7: Simulation without immunity. Development of 
overall costs for lump compensations and 

neuraminidase inhibitors during one epidemic which 
never dies out.  

One interesting effect is the influence of 
neuraminidase inhibitors on progression of an 
epidemic. Therefore we conducted a parameter 
variation experiment where the probability of 
neuraminidase inhibitor prescription varied from 0 to 
1 with steps of 0.2. Results (Fig. 8) show that 
neuraminidase inhibitors can at most slightly delay an 
epidemic. Tab. 2 lists costs for lump compensations 
and neuraminidase inhibitors in the parameter 
variation experiment. 

4 Conclusions 

The proposed model incorporates both the spread of 
epidemics and effects of health system structure and 
reimbursement. Therefore it can lead to a broader 
understanding of the influence of epidemics on health 
systems. 

The results of the simulations show that the model 
gives plausible development of infections and costs 
for the considered services. Moreover, it offers a rich 
structure for integrating further knowledge on various 
aspects of health care systems. 

 

Fig. 8: Infected individuals in parameter variation 
experiment with six different values for probability of 

neuraminidase inhibitor prescription. 

Further possible experiments with the developed 
model are simulations with limited capacity of 
providers, simulations of vaccination strategies and 
implementations of different strategies on micro level 
(strategies of doctors) and macro level (system 
strategies). Additionally the infection probability per 
contact could be varied or calibrated with real data. 

Tab. 2 Overall costs for lump compensations (Costs 
LC) and neuraminidase inhibitors (Costs NI) in the 

parameter variation experiment. Probability of 
neuraminidase inhibitor prescription varies from 0 to 1 

with steps of 0.2. 

NI_probability Costs LC Costs NI 

0.0 160854.7 0.0 

0.2 160347.9 28805.2 

0.4 161162.4 63185.6 

0.6 160402.2 82375.6 

0.8 159967.8 114736.0 

1.0 160782.3 147500.4 
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