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Abstract  

Automotive bus systems are used to connect control units, intelligent sensors 
and actors in vehicles. From economical point of view extended cable networks 
are desirable. Systems are often operated close to their specification limits. To 
provide safety critical applications under these circumstances, the functionality 
of a bus system must be ensured with sophisticated methods. 
An approach to detect problematic behaviour and its causes is the computational 
investigation of the transmitted signal quality (signal integrity) of the physical 
layer of the bus system. Models for any component of a bus system have to be 
developed. Accuracy of models and methods has to be ensured by measurements 
with realistic systems.  
However, many system parameters are not fixed, e.g. tolerances of devices, 
variations in the topology, external electromagnetic influences etc., so that there 
is a nearly unmanageable number of combinations. Validation of safe function 
becomes difficult. By simulation with parameterized models powerful search 
methodologies can be applied to find the most critical parameter combinations 
in the operation of a bus and to validate a system design this way. The 
application of several modern search methods is investigated and the results are 
compared to classical Monte Carlo Analysis. 
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1 Introduction and Motivation 

Automotive bus systems are used to connect control 
units, intelligent sensors and actors in vehicles. From 
economical point of view extended cable networks are 
desirable. Systems are often operated close to their 
specification limits. To provide safety critical 
applications under these circumstances, the 
functionality of a bus system must be ensured with 
sophisticated methods. 

An approach to detect problematic behaviour and its 
causes is the computational investigation of the 
transmitted signal quality (signal integrity or SI) of the 
physical layer of the bus system. Models for any 
component of a bus system have to be developed. 
Accuracy of models and methods has to be ensured by 
measurements with realistic systems.  

However, many system parameters are not fixed, e.g. 
tolerances of devices, variations in the topology, 
external electromagnetic influences etc., so that there 
is a nearly unmanageable number of combinations. 
Validation of safe function becomes difficult. By 
simulation with parameterized models powerful 
search methodologies can be applied to find the most 
critical parameter combinations in the operation of a 
bus and to validate a system design this way.  

2 Simulation Based Bus System Signal 

Integrity Optimization 

Many parameters influence the signal integrity of 
automotive bus systems. To ensure maximum safety, 
possible worst cases in operation of bus systems and 
parameter values causing them have to be 
investigated. Interesting parameters to look more 
closely at within bus systems are parameters causing 
signal disturbances: device tolerances (for example 
asymmetries in termination resistors of the differential 
bus line or shifts in voltage level of sending or in 
detection level of receiving transceivers), disturbances 
in supply voltage and ground connections, or, within 
more extensive investigations, temperature differences 
between nodes influencing their behaviour or signal 
integrity of the system when branches in the topology 
are added, removed or even interrupted. 

In [1] it is described how simulation models in 
VHDL-AMS (Very High Speed Hardware Description 
Language – Analogue and Mixed Signals) for the 
different components of bus systems can be designed 
and used in physical layer simulations. A transceiver 
model describing the signal integrity behaviour of a 
transceiver device was created using a physical 
approach and a transmission line model based on 
analytical approaches [2] is used. Having the models 
available search methodologies can be combined with 
physical layer simulation to find critical cases in bus 
system operation. Monte Carlo and sensitivity 
analysis, which are commonly used in circuit design, 
produce acceptable results [3], [4], [5]. But in the last 

years many new methodologies were developed which 
promise to produce better results in much shorter time 
[6], [7]. The application of modern search 
methodologies for the analysis of signal integrity of 
bus systems is investigated, especially the following 
methods: Tabu Search, Simulated Annealing, Genetic 
Algorithms and Swarm Optimization [8]. Results 
about the applicability to bus system investigation, 
adaptability to this problem, optimization run time and 
convergence to optima (worst cases) of those methods 
are presented. 

In the following sections optimization results of the 
different methodologies are given to analyze the 
applicability and the efficiency of the algorithms in 
detail. Investigations about run time reduction and 
convergence within local optima are presented. Also a 
comparison between the applied modern search 
methodologies and the classical Monte Carlo Analysis 
concerning bus system optimization is provided. An 
application example in section 4 shows the necessity 
of using advanced search methods in practice. 

3 Bus System Optimization with Search-

Methods 

For comparison of search methods, two test cases 
have been defined. The test cases are rather small, 
because first their worst case parameter set is obtained 
by analyzing all possible parameter combinations 
(with some practical restrictions, see below). Later 
those worst case parameter values are compared to the 
ones found by the different search methods. 

3.1 Test Cases 

Test case 1 consists of a bus system network with 3 
nodes which are connected like a chain with cables of 
length 1 m (see Fig. 1). The nodes at the two ends, 1 
and 2, are terminated with an adapted termination in 
order to avoid reflections, RBP and RBM have the value 
of 47 Ω. Node 3 in the middle is high ohmically 
terminated, RBP and RBM have the value of 1.3 kΩ. 
Sender is node 1. 

 

Fig. 1 Setup of Test Case 1 

In the scenario of test case 1 the differential 
termination resistors RBP and RBM are the parameters 
to be varied, so that there are 6 variable parameters. 
This is of special interest because they have to be 
ideally symmetrically to ensure correct differential bus 
signal behavior. 
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Test case 2 consists of five nodes connected by 
transmission lines with lengths l1 to l4 (see Fig. 2). As 
in Test case 1 the two nodes at the ends, 1 and 5, are 
terminated with an adapted termination, the others in 
the middle are high ohmically. The values of the 
termination resistors RBP and RBM are fixed in this 
setup. Sender is as before node 1. 

 

Fig. 2 Setup of Test Case 2 

In this test case the line length parameters are varied, 
so that there are 4 free parameters. Variation of line 
length may cause problematic bus signal behaviour 
because the line lengths directly influence the 
overlapping of reflected signals. 

3.2 Worst Cases of the Test Cases 

To have a comparison base for the parameter values 
found by the search methods, the worst case 
parameters values for the test cases have to be 
obtained. To achieve this all possible parameter 
combinations for the test cases have to be evaluated.  

In test case 1 the termination resistance values are 
varied within a 10% range (see. Tab. 1). 

Tab. 1 Parameter Variation Ranges for Test Case 1 

 Min. Value Init. Value Max. Value 

RBP1 42.3 Ω 47 Ω 51.7 Ω 

RBM1 42.3 Ω 47 Ω 51.7 Ω 

RBP2 1.17 k Ω 1.3 kΩ 1.43 kΩ 

RBM2 1.17 k Ω 1.3 kΩ 1.43 kΩ 

RBP3 42.3 Ω 47 Ω 51.7 Ω 

RBM3 42.3 Ω 47 Ω 51.7 Ω 

  

If the variation of the six resistors would be done in 
small steps, for example 1 Ω steps, then there is a 
great amount of combinations, in the example 
approximately 624 1067626010 ⋅=⋅ , that has to be 
checked. To reduce this extremely high amount of 
simulations to a reasonable number, the amount of 
values within the parameter range will be reduced. For 
each parameter there will be 5 different values: The 
edges of the interval, the initial value and the two 
values exactly in the middle between the initial and 
the edge value. So that in case of a resistor with 47 Ω 
initial value and a tolerance range of 10 % there will 
be the values 42.3 Ω, 44.65 Ω, 47 Ω, 49.35 Ω and 
51.7 Ω. This reduces the amount of simulations to 

1562556
=  which can be run in a reasonable amount 

of time. 

The found worst case for test case 1 is listed in Tab. 2. 

Tab. 2 Worst Case Parameter Values for Test Case 1 

 Worst Case Min. Value Max. Value 

RBP1 42.3 Ω 42.3 Ω 51.7 Ω 

RBM1 42.3 Ω 42.3 Ω 51.7 Ω 

RBP2 1.17 kΩ 1.17 kΩ 1.43 kΩ 

RBM2 1.17 kΩ 1.17 kΩ 1.43 kΩ 

RBP3 42.3 Ω 42.3 Ω 51.7 Ω 

RBM3 42.3 Ω 42.3 Ω 51.7 Ω 

 

The worst case values appear to be for all varied 
parameters exactly the minimum allowed values. A 
comparison between the differential bus signals with 
initial and worst case parameter values at the node 
with the worst quality value is shown in Fig. 3. 
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Fig. 3 Worst Case Signal for Test Case 1 

It can be seen that the amplitude of the differential bus 
signal in Fig. 3 with worst case values is lower than 
the amplitude of the signal with initial values. Thus 
the quality value of the signal with worst case values 
is higher since it has greater potential to injure eye 
diagram mask borders because of its lower amplitude 
and thus is more interesting concerning worst case 
optimization. 

The quality value of a signal is calculated by 
comparison of the signal with an eye diagram mask 
and determining weather the signal violates the 
borders of the mask. In case of violation the area of 
intersection between mask and signal is taken as 
quality value, in case of no intersection the area 
between signal and mask lines is proportional to the 
quality value of the signal to evaluate its potential risk 
of violating the mask. For details about automated 
signal quality evaluation see [1]. 

In test case 2 the parameters to vary are the lengths of 
the transmission lines l1 to l4 (see. Fig. 2) connecting 
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the nodes. The line lengths are varied between 0.5 m 
and 5 m. In order to reduce the amount of simulations 
to check the number of parameter value combinations 
is reduced similar to test case 1. Here the line lengths 
are varied within the given interval in steps of 0.5 m 
so that there are ten different values for each 
parameter to be checked. This gives a total amount of 
simulations of 104 which have to be checked. Tab. 3 
lists the parameter values of the three found worst 
cases together with the quality value of the 
corresponding parameter value combination. 

Tab. 3 Worst Case Parameter Values for Test Case 2 

 Worst Case 2nd Worst 
Case 

3rd Worst 
Case 

l1 5.0 m 4.5 m 5.0 m 

l2 4.5 m 4.5 m 5.0 m 

l3 4.5 m 4.5 m 5.0 m 

l4 4.5 m 5.0 m 4.5 m 

Quality 0.1014 0.0807 0.0782 

 

Tab. 3 shows that the worst case parameter value 
combinations are not located at the border of the value 
intervals as in test case 1. A bad signal integrity in a 
chain topology like it is in test case 2 occurs when the 
line lengths are of approximately the same length, so 
that the reflections caused by the connected nodes 
overlap in a very disadvantageous way. Fig. 4 shows 
the differential bus signals for the initial and the worst 
case.  
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Fig. 4 Worst Case Signal for Test Case 2 

It can be seen that the worst case signal has more 
ringing in the amplitude caused by disadvantageously 
overlapping reflections and a greater time delay 
caused by increased line lengths. 

Due to the reflection overlapping at similar line 
lengths there are many local optima in this test case 
which will be a task to master for the search methods. 

In the next sections the results of common search 
methods like Tabu Search (TS), Genetic Algorithms 

(GA), Simulated Annealing (SA) and Particle Swarm 
Optimization (PSO) on these two test cases will be 
presented. They will be compared to the results of a 
Monte Carlo Analysis (MC). The tables in the 
following sections list the average parameter values of 
the found worst case for the different search methods, 
and give their relative deviation from the found worst 
case values from this section. 

3.3 Tabu Search 

The results for test case 1 are listed in Tab. 4. The first 
row of the table lists the average worst case parameter 
values found by Tabu Search, the second row gives 
their relative deviation from those worst case values 
found in the previous section. 

For test case 1 Tabu Search manages to find the exact 
worst case parameter values within 214 simulation 
runs. This is a rather good value, but the test case is 
friendly without local optima. 

Tab. 4 Average TS Results for Test Case 1 

Sim. 
Runs 

RBP1 
[Ω] 

RBM1 
[Ω] 

RBP2 
[kΩ] 

RBM2 
[kΩ] 

RBP3 
[Ω] 

RBM3 
[Ω] 

214 42.3 42.3 1.17 1.17 42.3 42.3 

(Dev.) 0 % 0 % 0 % 0 % 0 % 0 % 

 

Tab. 5 shows the results for test case 2. 

Tab. 5 Average TS Results for Test Case 2 

Sim. 
Runs 

Qual. l1 l2 l3 l4 

1131 0.0218 0.96 m 1.06 m 0.97 m 0.83 m 

(Dev.) 79 % 81 % 76 % 78 % 82 % 

 

For test case 2 Tabu Search does not give good 
results. Here it was not able to find a combination 
with a quality above 0.022 (worst: 0.1014) within 
more than 2500 simulation runs. The values of the 
found worst case were still in close range of the initial 
values of 1 m of line length. 

Since Tabu Search is a search method that operates 
very locally, it has problems with local optima. This is 
proved here with test case 2, where Tabu Search is not 
able to overcome the first local optimum it reaches. 

3.4 Genetic Algorithm 

Genetic Algorithm shows an indifferent behaviour on 
the two test cases. The results for test case 1 are listed 
in Tab. 6. 

GA manages to find the optimal configuration already 
in the initial population, so that actually no 
optimization is necessary. A probable reason for this 
is the small range of parameter variation. 

 



Tab. 6 Average GA Results for Test Case 1 

Sim. 
Runs 

RBP1 
[Ω] 

RBM1 
[Ω] 

RBP2 
[kΩ] 

RBM2 
[kΩ] 

RBP3 
[Ω] 

RBM3 
[Ω] 

0 42.3 42.3 1.17 1.17 42.3 42.3 

(Dev.) 0 % 0 % 0 % 0 % 0 % 0 % 

 

The results for test case 2 are listed in Tab. 7. 

Tab. 7 Average GA Results for Test Case 2 

Sim. 
Runs 

Qual. l1 l2 l3 l4 

308 0.0247 1.10 m 1.23 m 0.91 m 1.06 m 

(Dev.) 75.7 % 77.9 % 72.7 % 79.7 % 76.5 % 

 

In the second test case GA is not able to perform well. 
Even in optimization runs with more than 2000 
simulations the found parameter values still lie within 
the range of the initial values. This seems to be a 
rather strong local maximum, since either Tabu Search 
nore the in general more powerful GA are not able to 
leave it. A possible approach to improve the results for 
GA here are to perform modifications within the 
mutation and crossover settings. But these settings can 
be very problem specific as test case 1 shows where 
the worst case was easily found with the same settings 
that fail for test case 2. So as already proposed in [1], 
GA is able to produce good results with significant 
efforts that have to be spent in adaptation work, which 
limits its practical use. 

3.5 Simulated Annealing 

Simulated Annealing is able to find the worst case for 
both test cases. Tab. 8 shows the results for test case 1. 

Tab. 8 Average SA Results for Test Case 1 

Sim. 
Runs 

RBP1 
[Ω] 

RBM1 
[Ω] 

RBP2 
[kΩ] 

RBM2 
[kΩ] 

RBP3 
[Ω] 

RBM3 
[Ω] 

1353 42.3 42.3 1.17 1.17 42.3 42.3 

(Dev.) 0 % 0 % 0.1 % 0 % 0 % 0 % 

 

In test case 1 SA manages to reach the worst case 
parameter values within very little deviation. Tab. 9 
shows the results for test case 2. 

Tab. 9 Average SA Results for Test Case 2 

Sim. 
Runs 

Qual. l1 [m] l2 [m] l3 [m] l4 [m] 

1015 0.1006 4.74 4.50 4.91 4.55 

(Dev.) 0.8 % 5.1 % 0.0 % 9.1 % 1.1 % 

 

In test case 2 the parameter values do not fit exactly to 
those obtained in section 3.2. But since there the 
values were fixed to certain steps here with simulated 
annealing the values are free to vary within the given 
range. All the found values lie in average between 
4.5 m and 5 m with a deviation of less than 10 % from 
the worst case values so that it can be said that the 
worst case with respect to its definition from section 
3.2 was found. 

The rather high amount of simulation runs compared 
to Tabu Search, which is comparatively quick in test 
case 1 and without success in test case 2, can be 
explained as follows: Simulated Annealing is based on 
a randomized approach of neighborhood search and 
does not evaluate the complete neighborhood of the 
current search point like Tabu Search. In addition SA 
accepts value combinations with worse quality from 
time to time to be able to avoid getting stuck in local 
optima. Thus there are more simulation runs with 
parameter values in SA that have to be rejected than in 
Tabu Search. That SA needs for test case 2 less 
simulation runs than for test case 1, although the 
initial parameter values are located nearer to the worst 
case values in test case 1 than in test case 2, can be 
explained with the smaller number of parameters in 
test case 2 (4 compared to 6 in test case 1, so 50% less 
parameters have to be varied). 

Because the parameter values are free to vary in SA it 
was even able to find a case that has higher quality 
than the worst case where the parameter values were 
bound to fixed steps to reduce the amount of 
combinations. The values of the found worst case by 
SA are listed in Tab. 10. 

Tab. 10 Worst Case Found by SA for Test Case 2 

Sim. 
Runs 

Qual. l1 [m] l2 [m] l3 [m] l4 [m] 

590 0.1046 4.90 4.91 4.80 4.91 

 

3.6 Particle Swarm Optimization 

Particle Swarm Optimization performs best out of the 
compared search methods on both test cases: Within 
comparatively fewest simulation runs it was able to 
find the worst cases for both test cases with only small 
deviation. Like with SA the parameter values in PSO 
were also free to vary and not bound to fixed steps. 
The results of test case 1 are listed in Tab. 11. 

Tab. 11 Average PSO Results for Test Case 1 

Sim. 
Runs 

RBP1 
[Ω] 

RBM1 
[Ω] 

RBP2 
[kΩ] 

RBM2 
[kΩ] 

RBP3 
[Ω] 

RBM3 
[Ω] 

160 42.3 42.3 1.21 1.20 42.3 42.3 

(Dev.) 0 % 0 % 3.3 % 3.0 % 0 % 0 % 

 



The values of the adapted termination resistors of 
node 1 and node 3 are matched exactly. Those of the 
high ohmic terminated resistors of node 2 have a little 
deviation of about 3 %. The results for test case 2 are 
listed in Tab. 12. 

Tab. 12 Average PSO Results for Test Case 2 

Sim. 
Runs 

Qual. l1 [m] l2 [m] l3 [m] l4 [m] 

94 0.0962 4.70 4.07 4.74 4.98 

(Dev.) 5.1 % 5.9 % 9.5 % 5.3 % 10.6 % 

 

Compared to SA the results of PSO for test case 2 
have a little higher deviation, but still match the found 
worst case from section 3.2 good. PSO needs much 
less simulation runs to reach the worst case than other 
methods. And like SA it was also able to find 
parameter values that have a worse quality than the 
worst case from section 3.2. They are display in Tab. 
13. 

Tab. 13 Worst Case Found by PSO for Test Case 2 

Sim. 
Runs 

Qual. l1 [m] l2 [m] l3 [m] l4 [m] 

160 0.1025 4.77 4.87 4.68 5.00 

 

So it can be said, that PSO gives the best performance 
of the compared search methods for the test cases. A 
comparative overview about the presented results of 
the search methods will be given in section 3.8. 

3.7 Monte Carlo 

After analyzing the modern search methods in the 
previous sections the results will be compared to 
classic Monte Carlo analysis as it can be found in 
many common circuit design and analysis programs. 
Monte Carlo creates parameter value combinations 
randomly and analyses them, so that after some 
amount of simulation runs the worst case is found 
with some probability. Here the maximum threshold 
was set to 1000 simulation runs to keep comparability. 
If MC will need more than 1000 simulation runs it 
will definitely have less good performance than the 
other methods.  

The results for test case 1 are listed in Tab. 14. 

Tab. 14 Average Monte Carlo Results for Test Case 1 

Sim. 
Runs 

RBP1 
[Ω] 

RBM1 
[Ω] 

RBP2 
[kΩ] 

RBM2 
[kΩ] 

RBP3 
[Ω] 

RBM3 
[Ω] 

515 42.97 43.02 1.255 1.286 43.42 43.81 

(Dev.) 1.6 % 1.7 % 7.3 % 9.9 % 2.6 % 3.6 % 

 

It can be seen that within 1000 simulation runs for test 
case 1 MC is only able to find the worst case 
parameter values with some deviation. It does not 
reach the final worst case values, though all parameter 
values are within 10 % deviation of the worst case 
values. The amount of simulation runs needed to find 
the worst parameter combination varies for the 
different Monte Carlo runs as expected: The fastest 
run managed to find the worst case within 77 
simulation runs, the slowest one needed 899 
simulations. 

The results for test case 2 are listed in Tab. 15. 

Tab. 15 Average Monte Carlo Results for Test Case 2 

Sim. 
Runs 

Qual. l1 [m] l2 [m] l3 [m] l4 [m] 

312 0.0887 4.29 3.67 4.21 4.09 

(Dev.) 12.5 % 14.2 % 18.4 % 6.5 % 9.1 % 

 

For test case 2 the deviation between the found worst 
case parameter values and the actual worst case values 
is much higher than for test case 1. Here the parameter 
ranges were bigger than in test case 1 so that there are 
less parameters to vary, the probability of finding 
value combinations close to the worst case is smaller. 

3.8 Comparison of Methods 

After presenting the results of the different search 
methods for the test cases the methods will be 
compared concerning found quality and needed 
amount of simulation runs. Fig. 5 shows the 
comparison for test case 1. 
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Fig. 5 Comparison of Methods for Test Case 1 

The shown qualities are displayed in percent of the 
worst case quality, the amount of simulation runs is 
referring to the Monte Carlo value. All search 
methods are able to find the worst case for test case 1 
within small deviation. The amount of needed 
simulation runs varies strongly: GA performs best 
because the worst case combination is already found 
in the initial generation, TS and PSO need clearly less 



than half of the simulations of MC, SA clearly more 
than twice. 

The results for test case 2 are shown in Fig. 6. 
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Fig. 6 Comparison of Methods for Test Case 2 

For the more complex test case 2 only SA and with a 
little deviation PSO were able to find the worst case. 
With a deviation of about 10 % also MC succeeded. 
TS and GA got stuck in the initial local optimum. 
From the three successful methods PSO clearly 
performs best, it only needs a third of the simulation 
runs that MC needs. TS needs more than three times 
more than MC. 

Summarized it is obvious that PSO clearly gives the 
best performance over the two test cases. In both cases 
PSO was able to find the worst case within small 
deviation needing comparatively few simulation runs. 
No other of the investigated search method showed a 
comparable performance on both test cases. 

4 Application Example 

After extensive comparison of different search 
methods on two small test cases the practical use of 
applying search methods will be shown in an 
application example. The topology in Fig. 7 consisting 
of 7 nodes will be analyzed using Particle Swarm 
Optimization. 

 

Fig. 7 Application Example Topology 

The topology with the given line lengths in Fig. 7 
already shows bad signal integrity due to many 
reflections (see Fig. 8) but should be still operational. 
The aim of the worst case optimization is to check 
weather changing the line lengths can cause worse 
reflections und thus influence the signal integrity in a 

negative way so that the bus is probably not 
operational any more. To achieve this aim the line 
length given in Fig. 7 are varied for some meters 
around their initial values. PSO manages to find a 
configuration with much worse signal integrity, the 
comparison of 4 transferred bits within the differential 
bus signals is shown in Fig. 8. 
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Fig. 8 Signal Integrity in Application Example  

It can be seen clearly that the changed line lengths 
cause a heavy disturbance at the middle of each 
transferred bit. The disturbance even crosses the zero 
line, so that most probably the bit will not be detected 
properly by the receiver and thus the bus will not be 
functional. The line lengths which cause such a 
problematic signal integrity are listed in Tab. 16. 

Tab. 16 Worst Values for Application Example 

l1 [m] l2 [m] l3 [m] l4 [m] l5 [m] l6 [m] l7 [m] 

1.9 5.0 8.5 0.5 4.0 1.0 0.3 

 

With this example could be shown, that only the 
design of a topology, even without consideration of 
parameter tolerances or external influences, can cause 
serious problems with signal integrity. Thus 
simulation based bus system topology validation is an 
important issue since such failure cases would be hard 
to discover only by measurement. 

5 Conclusion 

To ensure correct functionality of automotive bus 
systems sophisticated methods are needed. An 
important validation step is analyzing the bus system 
behaviour with computational investigation of the 
signal integrity within the physical layer. Models for 
each component of bus systems were developed and 
their accuracy verified by measurements with realistic 
systems. 

The resulting comparison of the modern search 
methods with Monte Carlo demonstrates that Particle 
Swarm Optimization shows the best performance on 
the test cases, while other methods have problems 
with local optima or long optimization times. This 
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knowledge is used to analyze a realistic application 
example containing a complex bus system with 
several nodes. With the help of simulation based worst 
case analysis it is explained, that the design of a bus 
system topology has to be done carefully in order to 
avoid malfunctions. 
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