
EVOLUTIONARY OPTIMISERS IN CALIBRATION 
OF ACTIVATED SLUDGE MODELS 

Jukka Keskitalo, Kauko Leiviskä 

Control Engineering Laboratory 
P.O Box 4300, FIN-90014, University of Oulu 

jukka.keskitalo@oulu.fi (Jukka Keskitalo) 

Abstract  

In most applications of the Activated Sludge Models (ASM), calibration is based 
on more or less ad-hoc and trial and error approaches. There is a need for more 
systematic and automated approaches for ASM calibration. In this study, the 
applicability of real-coded genetic algorithms and differential evolution in 
calibration of a modified ASM No. 1 was evaluated. The evolutionary 
optimisers were used in parameter identification of a subset of the model 
parameters. The results were compared with a previously proposed calibration 
approach based on Monte Carlo simulations. All methods were capable of 
calibrating the model when given enough computation time. However, some of 
the evolutionary optimisation methods had a clear advantage in terms of 
computation time against the Monte Carlo method. The calibration was tested on 
an independent data set. The calibrated model provided accurate predictions on 
the testing data. However, it was found that the best parameter set for the 
calibration data did not result in the best performance for the testing data. 
Therefore the calibration and testing data sets have somewhat different optimal 
parameter values. As the optimal parameter values cannot be expected to remain 
constant for extended periods of time, the model will need recalibration in 
practical applications. This result emphasises the importance of methods which 
can automate the model calibration. 

Keywords: pulp and paper wastewater, modified activated sludge model no. 1 (ASM1), 
parameter identifiability, model calibration, full-scale WWTP. 
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1 Introduction 
Modelling activated sludge systems has become an 
accepted practice in wastewater treatment plant 
(WWTP) design, teaching and research. Examples of 
model applications include education of process 
operators, evaluation of process alternatives in design 
phase and process optimisation [1]. Activated Sludge 
Models (ASM) published by the IWA Task Group on 
Mathematical Modelling for Design and Operation of 
Biological Wastewater Treatment [2] are by far the 
most widely used models for activated sludge systems. 
The ASMs have been implemented in a number of 
commercial WWTP simulators as well as general 
purpose simulation environments [1]. 
 
Despite the popularity of the ASMs, questions 
regarding their calibration remain to be answered. The 
fact that parameters of the ASMs are not universal, 
and that influent wastewater has to be characterised in 
terms of the model state variables, was acknowledged 
already in the original IWA Task Group reports [2]. 
The Task Group provided some guidelines for 
calibrating the models but no comprehensive 
calibration protocol was given. Experimental 
procedures for estimating model parameters and 
wastewater characterisation were developed by several 
researchers to fill the gaps in calibration methodology. 
Review on these methodologies can be found in [3]. 
Systematic calibration protocols were developed later 
to give a description of complete calibration 
procedure. Sin et al. have reviewed some of these 
protocols [4]. Despite all the effort and numerous 
publications over the years on calibrating the ASMs, 
none of the proposed calibration protocols has 
established the status as the standard calibration 
protocol. Review of literature on applications of the 
ASMs revealed that in practice calibration is often 
based on more or less ad-hoc approaches [5]. 
 
It is well-known that the parameters of large scale 
environmental models such as the ASMs are poorly 
identifiable [6]. For example, it was stated already in 
the IWA Task Group report on ASM1 that errors in 
the estimate of a certain parameter will be 
compensated when estimating values of other 
parameters [2]. The activated sludge models are 
practically unidentifiable for two reasons: the model 
structure does not allow identification of unique 
values for all parameters, and the available data is 
insufficient in quality and quantity [7]. Fortunately, 
only a subset of parameters has to be calibrated for a 
certain application. Determining suitable 
combinations of identifiable parameters has been 
mainly based on expert knowledge. As the 
combinations are not guaranteed to be uniquely 
identifiable, parameters have been adjusted manually 
one by one. 
 

As alternatives to the experience based approach, 
systematic approaches have been proposed to address 
the problem of parameter identifiability in large scale 
non-linear models. These approaches systematically 
evaluate subsets of parameters to determine their 
identifiability given the available data and model 
structure. The most often cited and applied 
identifiability analysis methodologies were developed 
by Weijers and Vanrolleghem [8] and Brun et al. [6]. 
There have also been more recent developments in 
this field [9-10]. Methods described in [8], [6] and [9] 
have been successfully applied on the ASMs. The 
method of Weijers and Vanrolleghem [8] is based on 
the Fischer Information Matrix (FIM). Properties of 
the FIM are used to find identifiable subsets of 
parameters. The method of Brun et al. [6] is derived 
from linear regression diagnostics. Both methods 
make use of local sensitivity analysis. 
 
Identifiability analysis methods partly automate the 
calibration process by systematically screening for 
identifiable parameter subsets instead of relying on 
expert judgment. Achieving a higher level of 
automation in the calibration procedure is desirable in 
order to avoid the problems associated with the 
commonly used trial and error approaches: the 
laboratory scale experiments to estimate parameters 
are time consuming and expensive and there is no 
established standard protocol for conducting the 
experiments. Moreover, variable operating conditions 
in some industrial treatment plants lead to the need of 
updating calibration. For example, by analysing 
process data from pulp mill WWTP it was found that 
dependencies between process variables differ 
significantly in different data clusters, which represent 
operating conditions extracted from the process data 
[11]. Frequent recalibration involving extensive 
measurement campaigns would make the model 
application too arduous. On the other hand, with 
feasible automatic calibration methods the 
recalibration would not become an issue.  
 
Naturally, the next step in automating calibration 
procedure is to use numerical optimisation methods to 
calibrate the identifiable parameter subsets instead of 
manual parameter adjustment. So far, identifiability 
analysis has not been much used in combination with 
global optimisation methods. Monte Carlo based 
calibration approach, where parameter space was 
sampled with Latin hypercube sampling (LHS), was 
applied to calibrate a subset of ASM2d parameters in 
[7].  Sin et al. justify their use of Monte Carlo 
approach over other optimisation methods by citing a 
claim that global search methods such as genetic 
algorithms would be unusable due to their requirement 
of an enormous number of simulations [7]. 
 
Genetic algorithms (GA) and differential evolution 
(DE) have been previously used successfully in 
parameter identification of nonlinear bioprocess 



models. In [12], GA was used to estimate parameter 
values of a model for E. Coli fed-batch cultivation 
process. Real-coded GA was used in [13] for 
parameter identification of chemostat bioprocess 
model. A modified DE was developed and applied to 
estimate parameters of a Monod-type batch 
fermentation model [14]. However, these successful 
applications using data from simulators or from 
laboratory scale experiments are no absolute proof that 
the methods are equally feasible in modelling full 
scale biological wastewater treatment processes.  
 
This paper studies the applicability of genetic 
algorithms and differential evolution in calibration of 
a mechanistic model based on the ASM1 to simulate 
the biological treatment of pulp mill effluent by an 
activated sludge treatment plant. Identifiable subset of 
parameters is chosen by following the methodology of 
Brun et al. [6]. Performance of the evolutionary 
optimisation methods in calibration of the Activated 
Sludge Model is compared with the Monte Carlo 
based calibration approach proposed in [7]. 

2 Materials & methods 
2.1 Process and data 

The WWTP under study is fully aerobic activated 
sludge plant consisting of primary sedimentation, 
aeration and secondary sedimentation. The WWTP 
treats an average of 32 000 m3 of wastewater per day 
from a pulp mill with an annual production of 340 000 
tonne of fully bleached kraft pulp. Process data 
including online measurements and results from 
laboratory analyses was extracted from the mill 
databases. The data covers the period from 1  
September 2009 to 31 January 2010. 
 
Flow rates of influent wastewater, return sludge and 
wasted sludge, and total chemical oxygen demand 
(COD), total nitrogen (N) and total phosphorus (P) 
concentrations are included in the process data of the 
WWTP influent. The effluent process data consists of 
total COD, total N, total P, soluble N and soluble P 
concentrations. Flow rates in the data are daily 
average values. Total COD concentrations are 
analysed from 24 hour composite samples. N and P 
concentrations are analysed from seven day composite 
samples. 
 
The process data has been split into calibration and 
testing data sets. First 77 days of the data were used as 
training data and the remaining 76 days as validation 
data. The calibration data set is used to identify the 
model parameters. The testing data set is used to 
check if the calibration results can be generalised. 

2.2 Model structure 

The applied model is modified from the original 
ASM1 to be more feasible in modelling the biological 
treatment of nutrient deficient wastewaters. The 

modifications are motivated by the fact that the 
original ASM1 was developed to describe 
simultaneous removal of excess organic nitrogen and 
carbon. On the other hand, nutrient content in pulp 
mill wastewaters is typically very low, and addition of 
nutrients is required to get biological treatment 
without nutrient limitation problems. The model was 
introduced in [15] and simplified in [16]. Description 
of the model given in [16] is used in this work. 
 
When modelling biological wastewater treatment with 
the ASMs, reactors are modelled as continuous stirred 
tank reactors (CSTR). In this work the aeration basin 
was modelled as one CSTR having the complete 
volume of the aeration basin. Component balances for 
the liquid phase over each CSTR are written for every 
state variable of the model as 
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where Ci is the concentration of the ith component in 
mg l-1, Q is the flow rate in m3 d-1, V is the reactor 
volume in m3 and Ri is the reaction rate of the ith 
component in mg (l d)-1. Reaction rates Ri can be 
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where yj,i is the stoichiometric coefficient of the ith 
component for the jth process, rj is the rate equation 
for the jth process and n is the number of processes. 
Parameters are listed in Tab. 1 with their initial values. 
Initial parameters values come from [2] and [15]. As 
in [6], each parameter is assigned to an uncertainty 
class from 1 to 3. Class 1 represents accurately known 
parameters with 5% uncertainty, class 2 moderately 
known parameters with 20% uncertainty and class 3 
poorly known parameters with 50% uncertainty. 
 

Tab. 1. Stoichiometric and kinetic parameters. 
Parameter Unit Initial 

value 
Uncertainty 

class 
Stoichiometric parameters 
YH g COD (g COD)-1 0.67 2 
fP - 0.08 2 
iXB g N (g COD)-1 0.05 2 
iXP g N (g COD)-1 0.035 3 
iXBP,1 g P (g COD)-1 0.005 3 
iXBP,2 g P (g COD)-1 0.005 3 
iXPP g P (g COD)-1 0.004 3 
Kinetic parameters 

Hμ̂  d-1 12 3 
bH d-1 0.744 2 
KOH mg O2 l-1 0.2 3 
KS mg COD l-1 20 3 
KPi mg P l-1 0.2 3 
KP1 mg P l-1 0.01 3 
KP2 mg P l-1 0.5 3 
KNH mg N l-1 0.1 3 
ka m3 (g COD d)-1 0.16 3 
kh g COD (g COD d)-1 9.0 3 
KX g COD (g COD)-1 0.09 3 



The modified ASM1 describing biological part of the 
WWTP is coupled with a settler model to get 
predictions on quality of WWTP effluent that is 
discharged to sea. The settler model is necessary also 
for modelling the composition of return sludge. 
Secondary settler was modelled as described in the 
report on Benchmark Simulation Model no. 1 (BSM1) 
by the IWA Task Group on Benchmarking of Control 
Strategies for WWTPs [17]. The settler volume was 
divided into four layers instead of the original ten to 
reduce computation time. Primary settler was not 
included in the model, as the influent wastewater 
measurements used in calibration were made from the 
primary settler effluent. 

2.3 Identifiability analysis 

Analysis of practical identifiability of the applied 
model structure taking into account the available data 
is made by following the methodology described in 
[6]. In order to be identifiable, a parameter subset K 
with a number of k parameters has to be influential on 
the model outputs, i.e. the model outputs are sensitive 
to parameters in the subset K, and changes in certain 
parameters of the subset K may not cancel out the 
effect on model output by changes in other 
parameters. 
 
In the identifiability methodology of Brun et al. [6], 
sensitivity of the model outputs to changes in 
parameters is calculated first. The method is a local 
sensitivity analysis, where small changes are made to 
parameters at a specific location in parameter space. 
Dimensionless scaled sensitivity functions are  
 ( ) ( )

j

i

i

j
ji

ty
sc

ts
θ
θθ

θ
∂

∂Δ
=

,
, 0,

 (3) 

where ∂yi/∂θj denotes the derivative of a model 
variable yi with respect to the parameter θj evaluated at 
a specific point θ0j in the parameter space, ∆θj is an 
estimate of the reasonable range of θj and sci is a scale 
factor representing typical magnitudes of the output yi. 
The a priori measures of reasonable ranges for 
parameters are calculated from the uncertainty classes 
in Tabs. 1 and 2. All parameters in this work were 
assigned to classes 2 and 3, as the applied model is 
rather experimental compared to the well established 
standard ASMs. 
 
The sensitivity function in Eq. (3) was approximated 
with the finite difference method 
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where ξ is a perturbation factor. Sensitivity measures  
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are calculated to quantify the influence of individual 
parameters on the model outputs [6]. Vector sj is 
constructed by concatenating the sensitivity function 
vectors of each output variable i for the parameter j 
and n is the total number of measurements.  
 

Collinearity index of parameter subset K is defined as 
 

λ
γ ~

1
=K

 (6) 

where  is the smallest eigenvalue of matrix λ~ K
T
K SS ~~  

[6]. 
KS~  is the normalised matrix of sensitivity 

functions, where columns are the vectors sj belonging 
to the subset K. Purpose of the collinearity index is to 
reveal interdependencies of parameters in the subset K 
by quantifying the degree of collinearity between 
columns of matrix 

KS~ . Determinant measure ρK is 
useful in identifiability analysis as it considers both 
parameter sensitivity and collinearity. Low 
collinearity index γK and high determinant measure ρK 
values are indicators of good identifiability. The 
determinant measure is defined as [6] 
 ( ) k

K
T
KK SS 2/1det=ρ . (7) 

 
Kinetic and stoichiometric parameters of the modified 
ASM1 were included in the identifiability analysis. 
Parameters of the settler model were not included in 
the identifiability analysis and calibration procedure, 
and they were therefore kept at their default values. 
Wastewater characterisation of total COD and nutrient 
concentrations to COD and nutrient components of the 
applied model is also a part of the model calibration 
procedure. Wastewater characterisation was included 
in the identifiability analysis and calibration procedure 
as influent wastewater characteristics of each WWTP 
are unique and using default values would not be 
reasonable. 
 

Tab. 2. Influent wastewater characterisation used in 
identifiability analysis and calibration. 

Parameter Initial 
value 

Uncertainty 
class 

Biodegradable COD (αSS+ 
αXS) 

0.502 3 

Ratio of SS to biodegradable 
COD (αSS (αSS+ αXS)-1) 

0.468 3 

Ratio of SI to 
nonbiodegradable COD (αSI 
(1-(αSS+ αXS))-1) 

0.843 3 

Ratio of soluble N to total N 0.311 2 
Ratio of soluble P to total P 0.473 2 
Ratio of SNI to soluble N 0.078 3 
Ratio of SNH to soluble N 0.027 2 
N/COD in inert particulate 
matter (iXI) 

0.015 3 

P/COD in inert particulate 
matter (iXIP) 

0.005 3 

 
Wastewater characteristics in the model are given as 
ratios of model component concentrations to total 
COD, N and P concentrations. The sum of model 
component fractions for COD, N and P is one. The 
model component fractions cannot be used directly in 
identifiability analysis or calibration, as change in one 
fraction would have to be compensated in the other 
fractions to retain the sum of one. Therefore the 



wastewater characterisation was defined in a new set 
of components which can be altered without the need 
to compensate the changes. The defined components 
are converted back into model components before 
running a simulation. The new set of components is 
given in Tab. 2. Initial values of wastewater 
characterisation come from [16].  

2.4 Modelling objective 

Objective of the model calibration is to fit the 
modelled concentrations of pollutants to the measured 
values. From the WWTP operator’s point of view, the 
most important components in the effluent are the 
chemical oxygen demand, nitrogen and phosphorus. 
Discharges of these three are monitored by the 
authorities, and discharge limits are expected to 
become more stringent in the future. 
 
An objective function that describes the problem well 
is necessary in order for the optimisation to succeed. 
The problem at hand has multiple objectives, as the 
residuals between the modelled and measured total 
COD, N and P have to be minimised simultaneously. 
The weighted sum of squared errors objective function 
is calculated as follows: 
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where θ is the evaluated parameter subset, Yi is the ith 
measurement, Ŷi is the model output at the ith time 
instance and n is the number of measurements. 

2.5 Optimisation methods 

Genetic algorithms, differential evolution and Monte 
Carlo based calibration approach [7] are applied in 
calibration of the modified ASM1. Genetic algorithms 
are optimisation methods which operate on a 
population of potential solutions. The population is 
improved over several generations using genetic 
operators inspired by biological evolution. The 
potential solutions are encoded into chromosomes. 
Binary encoding is used most commonly, but other 
representations such as real valued encoding can be 
used. Information about the solution in the 
chromosomes must be decoded before fitness of the 
solution can be evaluated by an objective function. 
The chromosome without knowledge of the encoding 
provides no information about the optimisation 
problem. The optimisation process, however, operates 
on the encoded chromosomes using genetic operators. 
[18] 
 
Individual solutions are chosen to reproduce the next 
generation with a probability related to their fitness 
value. Recombination operators are used to combine 
genetic information from the selected parents to 
produce offspring. Mutation operator is applied to the 
new population to guard against the loss of genetic 

material in the selection and crossover. The new 
population is then again evaluated with the objective 
function. The GA is usually terminated after a 
predefined number of generations has been achieved. 
[18] 
 
Differential evolution is also based on a population of 
evolving solutions. The most novel aspect of DE is the 
differential mutation operator used in producing 
intermediary population. In differential mutation 
scaled difference of two randomly selected solutions 
is added to a third randomly selected solution. The 
intermediary population is recombined with the 
current population to produce a trial population. 
Potential solutions of the trial population compete 
with solutions of the current population for placement 
in the next generation. [19] 
 
There are many variants of GA and DE, and the 
choice of a suitable variant for a given problem is far 
from obvious. The GA variant used in this study is 
adopted from [13]. The real-coded GA described in 
[13] allows encoding parameter values in 
chromosomes without conversion between real values 
and binary digits. Genetic operators are also applied as 
described in [13].  
 
DE is inherently real-coded. Therefore it is directly 
applicable to the parameter optimisation problem at 
hand. Of the different DE variants DE/rand/1/bin is 
said to be more reliable while DE/best/1/bin 
converges faster on some problems. The terms “rand” 
and “best” after “DE” specify how the base vector is 
chosen in differential mutation. “rand” means that the 
base vector is chosen randomly from the current 
population and “best” means that the best vector from 
current population is chosen. “bin” means that 
uniform crossover is used in both variants. [19] Both 
DE/rand/1/bin and DE/best/1/bin are compared in this 
study. 
 
The effect of constraint handling method on the 
performance of DE is evaluated by comparing three 
constraint handling methods: brick wall penalty, 
random reinitialisation of out-of-bounds parameters 
and bounce-back. Boundary constraints arise from the 
fact that parameters of the mechanistic model have 
limitations on their possible values. The brick wall 
penalty sets a very high objective function value for 
solutions with out-of-bounds parameters to make sure 
such solutions will not be selected to the next 
generation. Random reinitialisation replaces offending 
parameters with random values from the allowed 
range. The bounce-back method replaces offending 
parameters with values that lie between the mutation 
base vector and the violated bound [19]. 
 
The Monte Carlo approach for model calibration of 
Sin et al. [7] uses Latin hypercube sampling to draw a 
predefined number of samples from the parameter 



space. The samples are evaluated with an objective 
function such as Eq. (8). The sample with the lowest 
objective function value is chosen as it describes the 
measured data best. In [7] the LHS is integrated into 
complete modelling procedure including the choice of 
parameters to be calibrated, definition of parameters 
space and testing the calibrated parameter set with 
data that was not used in the model calibration. 

3 Results and discussion 
3.1 Identifiability analysis 

The identifiability analysis methodology of Brun et al. 
[6] presented in Chapter 2.3 was used to find an 
identifiable parameter subset. The 27 kinetic, 
stoichiometric and wastewater composition 
parameters listed in Tabs. 1 and 2 were included in the 
identifiability analysis. 
 
The finite difference method (Eq. 4) used in 
calculating the sensitivity functions (Eq. 3) requires 
the choice of a proper perturbation factor ξ. The 
choice of ξ determines the quality of sensitivity 
function. Perturbation factor should approach zero, but 
in practice precision of calculations limits the choice 
[20]. Sensitivity analysis was run with ξ values of 
0.05, 0.01, 0.005 and 0.001. ξ value of 0.01 was 
chosen, as smaller values produced inconsistent 
results. 
 
The sensitivity function in Eq. 3 was calculated for all 
27 parameters of Tabs. 1 and 2 using the calibration 
data set. Three model outputs, total COD, N and P, 
were considered in the sensitivity analysis. Sensitivity 
measure δj

msqr defined in Eq. 5 was calculated for all 
parameters using the sensitivity functions. The 
parameters were ranked according to their δj

msqr 
values, and collinearity index γK defined in Eq. 6 and 
determinant measure ρK defined in Eq. 7 were 
calculated for all parameter subsets K of sizes 2 to 22.  
The lowest ranking five parameters were removed as 
the least significant parameters have very little effect 
on model outputs, and to reduce computation time. 
Including all 27 parameters would have required γK 
and ρK to be calculated for 134217700 parameter 
subsets while including 22 parameters reduced the 
number of subsets to 4194281.  
 
Results from calculation of γK and ρK for different 
subset sizes are shown in Tab. 3. Ranges of γK and ρK, 
ρK of subset with the smallest γK and proportion of 
subsets with γK < 10 are given for parameter subsets 
with sizes from 2 to 17. γK value of 10 was chosen as a 
threshold for subset identifiability in line with [6]. 
Subsets with γK ≥ 10 are considered poorly 
identifiable. There were no subsets of 17 or more 
parameters with γK < 10. 
 
 
 

Tab. 3. Identifiability analysis results. 
Subset 
size 

Kγ ,min Kγ ,max Kρ ,min Kρ ,max ρ (γ min) Kγ <10 
[%] 

2 1.00 12.61 0.36 34.21 1.72 99.6 
3 1.01 18.71 0.34 18.87 2.38 97.9 
4 1.09 25.34 0.34 12.64 1.90 93.7 
5 1.31 27.42 0.33 9.18 1.07 86.6 
6 1.51 34.21 0.32 7.21 0.93 76.5 
7 1.81 38.03 0.31 5.49 0.95 64.2 
8 2.02 40.89 0.31 4.37 1.17 50.8 
9 2.24 45.61 0.35 3.53 1.02 37.5 
10 2.48 47.75 0.38 2.89 0.76 25.7 
11 2.57 49.02 0.42 2.45 0.93 16.2 
12 2.71 50.26 0.45 2.10 0.82 9.1 
13 3.11 51.49 0.48 1.81 0.86 4.5 
14 3.54 52.37 0.51 1.59 0.62 1.8 
15 4.01 53.17 0.53 1.41 0.77 0.5 
16 5.40 53.64 0.55 1.27 0.80 0.1 
17 12.42 53.91 0.56 1.14 0.74 0.0 
 
Parameter subsets with γK < 10 are found up to subset 
size of 16. However, there are no subsets with more 
than 10 parameters having γK < 10 in hundred best 
subsets ranked with ρK values. This indicates that the 
largest identifiable subsets contain mostly 
insignificant parameters. A subset of ten parameters 
was chosen to be identified to calibrate the model. The 
subset was chosen as it had both low γK and high ρK 
values. The chosen subset is given in Tab. 5. 
Parameters which were not included were given their 
initial values listed in Tabs. 1 and 2. 

3.2 Model calibration 

The modified ASM was calibrated by optimising the 
parameter subset which was chosen in the previous 
chapter. A genetic algorithm, two differential 
evolution variants with different boundary constraint 
handling methods and the Monte Carlo based 
calibration approach [7] were all applied and 
evaluated for their performance in calibration. 
Boundary constraints for the parameters were defined 
by the uncertainty classes in Tabs. 1 and 2.  
 
Optimisation method parameters for both DE variants 
rand/1/bin and best/1/bin were population size = 50, 
scale factor F = 0.8 and crossover probability Cr = 0.9. 
The applied GA was adopted from [13] including the 
choice of GA parameters. Both GA and DE were run 
for 50 generations for a total of 2500 objective 
function (Eq. 8) evaluations. With the Monte Carlo 
based calibration approach, 2500 samples of 
parameter values were drawn using LHS. Initial 
values of the optimised model parameters are listed in 
Tabs. 1 and 2.  
 
As the performance of evolutionary optimisers may 
vary from run to run, parameter optimisation was run 
ten times with each method. Results from the ten runs 
were averaged as the interest is on average 
performance of the methods instead of a single best 



result. Progress of solution for the evolutionary 
optimisers is shown in Figs. 1 and 2. In the Figs. 1 and 
2, objective function values of the full population 
averaged over ten runs is plotted as a function of 
generation. The initial randomly generated population 
is omitted from the Figs. 1 and 2. DE with brick wall 
penalty converges most slowly while the other 
methods have quite similar performance. The GA has 
variation until the end of the optimisation run due to 
its mutation operator. DE/best/1/bin with bounce-back 
boundary constraint handling method has the fastest 
convergence. 
 

 
Fig. 1. Progress of solution for the GA and 

DE/rand/1/bin. Objective function values of the full 
population averaged over ten runs and plotted as a 

function of generation. 
 
It can be seen from the Figs. 1 and 2 that with the best 
performing optimisation methods the result after 15 to 
20 generations is already near the final result of full 
run of 50 generations. In practical applications it is not 
reasonable to run the optimisation further than 
necessary as computation times are considerable. On a 
fairly efficient desktop computer (AMD AthlonTM 64 
X2 Dual Core 4200+, 2.00 GB RAM) 2500 objective 

function evaluations required approximately 18 hours 
of computation. The required computation time is 
directly proportional to the number of objective 
function evaluations, so stopping the optimisation 
after 15 generations (750 objective function 
evaluations) corresponds to computation time of 
approximately five and half hours. 
 

 
Fig. 2. Progress of solution for DE/best/1/bin. 

Objective function values of the full population 
averaged over ten runs and plotted as a function of 

generation. 
 
Performance of the optimisation methods is compared 
at 750 objective function evaluations. For each 
method, best solution was taken from each of the ten 
runs. For these best solutions, mean and standard 
deviation of objective function values and sum of 
squared errors (SSE) of the three components in the 
objective function was calculated for both calibration 
and testing data to give the results in Tab. 4. 
  
From Tab. 4 it can be seen that DE/best/1/bin and 
DE/rand/1/bin with bounce-back boundary constraint 
handling gave the best results for calibration data. The 
Monte Carlo method performed worse than 

 

Tab. 4. Mean performance and standard deviations (in parentheses)  
of the best solutions averaged over the ten runs. 

 Training data Testing data 
 Obj. fun COD, SSE P, SSE N, SSE Obj. fun COD, SSE P, SSE N, SSE 
GA 721.7 

(39.2) 
8.79*105 

(4.40*104) 
3.5 

(0.6) 
28.5 
(6.2) 

322.9 
(7.8) 

1.47*106 
(8.20*104) 

14.1 
(0.9) 

270.7 
(16.0) 

DE/rand/1/bin, bounce-
back 

636.3 
(29.9) 

7.60*105 
(6.25*104) 

2.69 
(0.23) 

30.8 
(9.4) 

325.5 
(16.2) 

1.58*106 
(1.21*105) 

13.0 
(0.9) 

287.1 
(49.1) 

DE/rand/1/bin, brick 
wall penalty 

852.6 
(65.5) 

9.84*105 
(1.97*105) 

3.6 
(0.6) 

45.5 
(20.5) 

328.2 
(22.6) 

1.59*106 
(2.51*105) 

14.3 
(0.5) 

255.1 
(57.9) 

DE/rand/1/bin, random 
reinitialisation 

707.6 
(52.7) 

8.73*105 
(1.03*105) 

3.0 
(0.3) 

32.8 
(7.6) 

328.0 
(11.9) 

1.51*106 
(1.72*105) 

14.1 
(1.0) 

279.2 
(30.1) 

DE/best/1/bin, bounce-
back 

604.0 
(56.3) 

7.05*105 
(6.11*104) 

2.7 
(0.3) 

30.3 
(4.9) 

323.3 
(9.8) 

1.47*106 
(1.04*105) 

13.1 
(0.8) 

301.0 
(19.6) 

DE/best/1/bin, brick 
wall penalty 

808.2 
(76.9) 

8.83*105 
(1.23*105) 

3.4 
(0.5) 

49.4 
(16.6) 

319.9 
(21.1) 

1.42*106 
(1.51*105) 

14.7 
(0.8) 

253.8 
(62.4) 

DE/best/1/bin, random 
reinitialisation 

646.3 
(33.7) 

7.64*105 
(3.87*104) 

3.1 
(0.5) 

29.0 
(4.1) 

315.3 
(11.4) 

1.48*106 
(1.21*105) 

13.5 
(1.1) 

265.5 
(22.3) 

LHS 767.0 
(45.2) 

9.08*105 
(1.50*105) 

3.5 
(0.7) 

35.8 
(16.9) 

328.4 
(17.6) 

1.57*106 
(2.59*105) 

14.1 
(1.0) 

266.5 
(35.1) 



evolutionary optimisers except for DE with brick wall 
penalty. DE with brick wall penalty was the most 
inferior optimisation method. However, the best 
parameter set for the calibration data did not result in 
the best performance for the testing data. Therefore 
the calibration and testing data sets have different 
optimal parameter values. 
 
Although the optimisation runs produced many very 
similar results with only slight variance in the 
optimised parameter values, simulations with one 
result are presented. Optimised parameter values of 
the result with the lowest objective function value for 
the calibration data are given in Tab. 5. The result was 
obtained with DE/best/1/bin with bounce-back 
boundary constraint handling. Comparison between 
the simulation results and measured WWTP effluent 
total COD, N and P concentrations are illustrated in 
Figs. 3-5. The dotted vertical line in the Figs. 3-5 
represents the split between calibration and testing 
data. By visual comparison the measured and 
simulated values are in good agreement for both 
calibration and testing data.  
 
Tab. 5. Optimised parameter values of the result with 
lowest objective function value for calibration data. 
Parameter Calibrated value 
YH 0.804 
iXB 0.049 
iXP 0.025 
iXBP,1 0.0026 
iXBP,2 0.0059 
KS 14.01 
KX 0.123 
Biodegradable COD 0.747 
Ratio of SI to 
nonbiodegradable COD 

0.752 

Ratio of SNI to soluble N 0.043 
 
 

 
Fig. 3. The simulated COD concentration in the 

WWTP effluent and the measured COD concentration 
in the WWTP influent and effluent. 

 

 
Fig. 4. The simulated N concentration in the WWTP 

effluent and the measured N concentration in the 
WWTP influent and effluent. 

 

 
Fig. 5. The simulated P concentration in the WWTP 

effluent and the measured P concentration in the 
WWTP influent and effluent. 

4 Conclusions 
Given enough computation time, genetic algorithms, 
differential evolution and the Monte Carlo based 
calibration approach are all applicable for calibration 
of Activated Sludge Models. Some of the DE variants, 
DE/rand/1/bin and DE/best/1/bin with bounce-back 
boundary constraint handling, require much less 
computation time than less efficient methods to 
achieve sufficient convergence. This gives the 
evolutionary optimisers an edge in terms of 
computation time against the Monte Carlo methods. 
However, the Monte Carlo method is very simple to 
implement and the only required parameter for the 
optimisation method is the number of samples. Bad 
choice of evolutionary optimisation method and 
variant, as in this case DE with brick wall penalty, can 
actually lead to worse performance than the random 
search method. 
 
It was found that the most optimal parameter set for 
the calibration data did not result in the best 
performance for testing data. Therefore calibration and 
testing data sets have somewhat different optimal 
parameter values. It is therefore necessary to 
recalibrate the model regularly in practical 



applications. This result emphasises the importance of 
developing methods to automate the model 
calibration. 
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