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Abstract

Aluminium compounds are widely used as coagulation chemicals in water
treatment processes. However, the concentration of residual aluminium should
be minimized in potable water because it causes acceptability problems for
consumers.  In this  paper,  residual  aluminium of a water  treatment process was
modelled using linear and nonlinear methods. The aims were to construct
process models and to determine whether the concentration of residual
aluminium could be predicted reliably by using these methods. A variable
selection procedure with both methods was used to find the most important
factors affecting the concentration of residual aluminium. The results showed
that the most effective variables were water temperature, Al/KMnO4-ratio and
silicate concentration. In conclusion, the results were promising, and the
methods used showed potential considering the wider use of the data processing
procedure in water treatment processes.
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1 General
Aluminium compounds are widely used in water
treatment processes because of their good ability to
coagulate and flocculate both inorganic and organic
compounds. The coagulation phenomena in physical
and chemical level is described quite precisely and
variables concerning the phenomena are known
relatively well [1, 2]. However, coagulate compounds
have some disadvantages including residual
aluminium in distributed water. The residual
aluminium causes turbidity in water networks
resulting acceptability problems for consumers [3].  In
addition, metals such as aluminium (Al) have also
been implicated in some possible health effects [4].

Archived process history has the potential to be used
for diagnostics and improvement of industrial
processes, especially when used in combination with
specific laboratory measurements. At present,
artificial neural networks (ANN) are considered an
advantageous way to analyze data in a variety of
industrial processes, such as polystyrene production,
wastewater treatment, energy production, and even
soldering of electronics [5]–[14]. Many of these
applications have also demonstrated that ANNs can
provide an efficient automated method for modelling
industrial process data. Especially the multilayer
perceptrons (MLP) have proved their efficacy in the
modelling of a wide spectrum of industrial processes
[6,10,11,14].

In this paper, residual aluminium of a water treatment
process was modelled using multiple linear regression
(MLR) and neural networks (MLP).

2 Process and data
The experimental data was collected from the water
treatment plant of Suomen Sokeri in Kirkkonummi,
Finland. The plant is a chemical treatment plant and
uses mainly surface water from Lake Humaljärvi or
mixture of Lake Humaljärvi and Pikkala reservoir.

The process is a typical chemical process with
chemical flotation and powdered granulated activated
carbon (PAC) filtration. PAX-14, which is a
aluminium based coagulation chemical, produced by
Kemira Kemwater, was used as a coagulation
chemical. The dose of the chemical varied between
30- 80 g/m3.  The  dose  was  set  as  a  function  of  raw
water KMnO4 so that ratio would be between 0.8-2
kgAl/kgKMnO4.  The  final  decision  of  the  dose  is
controlled by process personnel.

Before flocculation, the pH value is adjusted with
calcium hydroxide to 6.1, which is experimentally
found as an optimum pH value. After filtration pH
was adjusted to 8.2 to be suitable for distribution.

Disinfection was done with UV-radiation and adding
sodium hypochlorite.

The data used was produced from the process and
laboratory measurements of 275 day period. The
original process data period was 5 minutes, which was
averaged  to  1  day  data  to  be  comparable  to  the
laboratory data. Before modelling, the outliers of the
data were filtered out and the missing data points were
added by linear interpolation. The laboratory and
process  variables  are  shown in  Tab.  1  and in  Tab.  2,
respectively.

Tab. 1 Laboratory data for modelling

Variable unit
pH
KMnO4 mg/l O2
Hardness mmol/l
Color mgPt
Conductivity mS/m
Silicate mg/l
Turbidity NTU

Tab. 2 Process data for modelling

Variable unit
Intake of surface water m3/h
Intake of ground water m3/h
Total intake of water m3/h
Aluminium feed l/h
Flow_to_filter_1 m3/h
Flow_to_filter_2 m3/h
Flow_to_filter_3 m3/h
Flow_to_filter_4 m3/h
Filter wash water m3/h
Portion of  Lake
Humaljärvi/ Pikkala
resevoir water intake

%

Level of surface water m
Pressure of filter 1 bar
Pressure of filter 2 bar
Pressure of filter 3 bar
KMnO4 mg/l
Flocculation pH
Temperature of water Co

Aluminium Dose g/m3

Aluminium dose/raw
water KMnO4

3 Methods
3.1 Multiple linear regression

In multiple linear regression [15], the purpose is to
model the relationship between two or more
explanatory variables and a response variable by
fitting a linear equation to observed data samples. In



principle, the MLR model with observations and
variables is given in (1):

nn XaXaXaae=Y ...22110  (1)

where Y is the value for the response variable, X is the
value of the predictor (explanatory) variable, a0…n
equal the unknown coefficients to be estimated, and e
signifies the uncontrolled factors and experimental
errors of the model. The fitting works by minimizing
the sum of the squares of the vertical deviations from
each  data  point  to  the  line  that  fits  best  for  the
observed data, which is also called least squares
fitting.

3.2 Multilayer perceptrons

Multilayer perceptrons (MLP) are well-known feed-
forward neural networks [5], which consist of
processing elements called neurons, and connections.
The neurons are arranged in three or more layers: an
input layer, one or more hidden layers, and an output
layer.  A  MLP  network  is  trained  with  data  samples,
which leads to a supervised learning procedure. The
network input signals are processed forward through
successive layers of neurons on a layer-by-layer basis.
At the first phase, the input layer distributes the inputs
to the first hidden layer. Next, the hidden neurons
summarize the inputs based on predefined weights,
which either weaken or strengthen the effect of each
input. The weights are determined by learning from
examples (i.e. data samples), which is called
supervised learning. Eventually, the inputs are
processed by a transfer function, and the result is
transferred as a linear combination to the next layer,
which is generally the output layer. The performance
of the model is then evaluated with an independent
validation data set.

Matlab version 7.6 [18] software was used in data
processing. The neural network used in the analysis
consisted of the process parameters as inputs, one
hidden layer with 5 hidden neurons and the output
neuron representing the predicted amount of residual
aluminium. Hyperbolic tangent sigmoid (tansig)
transfer function was used for the hidden layer, and
the linear (purelin) transfer function for the output
layer. The resilient back-propagation (trainrp)
algorithm [19] was exploited in training, and mean
squared error (mse) as the error function in training.

3.3 Variable selection

In recent years, variable selection has become a
relevant part of data analysis [16]. The purpose of
variable selection is to select a subset of p variables
from the set of P variables without considerably
degrading or with possibly improving the performance
of the model. While the so called exhaustive subset
selection methods involve the evaluation of a very
large number of subsets, the number of different
subsets to be evaluated can be reduced significantly by

using suboptimal search procedures [17], such as the
sequential forward selection method, which was used
for  the  selection  of  variables  in  this  case.  In  the
approach, the variables are progressively included to
larger and larger subsets so that the prediction
performance for residual aluminium is maximized. To
select p variables from the set of P variables: (1)
Search for the variable that gives the best value for
selected criterion. (2) Search for the variable that
gives the best value with the variable(s) selected in
stage 1. (3) Repeat stage 2 until p variables are
selected.

4 Results
The results of variable selection for the residual
aluminium are presented in Tab. 3 for the linear
regression  and  in  Tab.  4  for  the  MLP  method.   The
evolution curves of variable selection for residual
aluminium are presented in Fig. 3. The figure can be
interpreted so that the model performance improves
by  adding  variables  to  it,  in  the  order  presented  in
Tabs. 3 and 4, until the improvement gradually stops,
achieving the best model at four variables by using the
nonlinear MLP method and at six by using the linear
MLR method. The validation of the models was made
using the 5-fold cross validation method. The results
for  these  five  validation  sets  are  shown  in  Fig.  2
(MLR) and Fig. 3 (MLP).

Tab. 3 Results for the MLR variable selection

Variables Correlation coefficient

Temperature of water 0,722

Aluminium dose/raw
water KMnO4

0,764

Silicate 0,782

Turbidity 0,787

Portion of  Humaljärvi/
Pikkala water intake 0,789

KMnO4 0,791

Tab. 4 Results for the MLP variable selection

Variables Correlation coefficient

Temperature of water 0,717
Silicate 0,795
Aluminium dose/raw
water KMnO4 0,812

Turbidity 0,814
KMnO4 0,807
Portion of  Humaljärvi/
Pikkala water intake 0,814



Fig. 1 Evolution curves of MLR and MLP variable
selection for residual aluminium.

Fig. 2 Validation results of multiple linear regression.

Fig. 3 Validation results of MLP.

5 Discussion
In this paper, the concentration of residual aluminium
was modelled using multiple linear regression and
neural networks. As the results in the Tab. 3 and Tab.
4 show, the models of both methods were fairly good.
Especially, the prediction accuracy for the baseline of
residual aluminium was excellent, although reasons
for some sharp concentration peaks could not be found
(see Fig. 2 and 3). The four most important variables
(water temperature, Al/KMnO4-ratio, silicate

concentration and turbidity) were the same using both
methods, which indicates good reliability of the
results.

The nonlinear MLP method possibly seems to
overcome the MLR method in two ways (see Fig. 1).
First, the prediction ability of the MLP model is
slightly better. This indicates that the problem would
have some nonlinearity, although, the differences of
the models are minor. Second, the best model can be
achieved with a lesser number of variables by the
MLP method, which would be beneficial in industrial
applications. However, the use of a linear method
could be reasonable in cases where nonlinearity does
not prevail; in such cases the faster linear methods
would be more efficient.

Some restrictions for the performance of the method
used may follow from the fact that the variable
selection was implemented by adding variables to the
model one by one. This means that all the possible
combinatorial effects are not evaluated using the most
sophisticated methods. So it is possible that there are
two or more variables whose mutual interaction may
have a considerable effect on the concentration,
although their singular effect on the model is
insignificant. Nonetheless, developing data analysis
methods for process industry involves always more or
less compromises. Modelling the influence of all
variable combinations would certainly be possible, but
in reality the computing time for that would be long,
which would evidently reduce the usability of the
method in any real-world process applications.

The results show that the used approaches have
several benefits. Apparently, the methods are flexible,
have a high computing power, and are able to find
nonlinear connections. Trained with real process data,
the models are also able to adapt to exceptional
situations in the process. Additionally, the methods
are suitable for cases where physical processes are not
well known or are highly complex. Generally
speaking, although the created models assimilated
good prediction abilities, the models can later be
improved by adding more data samples or some
process variables that were not used here/present this
time. In practice, a linear model with two or three best
variables could help to develop a controller to
minimize the residual aluminum in the process. Thus,
the data analysis procedure used seems to provide an
efficient means of modelling the real water treatment
process.

6 Conclusion
In conclusion, the results were promising considering
the wider use of the data-driven variable selection and
modelling in water treatment processes, and the
potential of the method used was clearly indicated.
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