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Abstract  

Simulation education has been a significant facet of university curricula, both in industrial 
engineering and in business management, for many years.  Indeed, the importance of 
simulation education to both these curricula approximately coincides with the accessibility of 
simulation analyses via skillful programming in computer languages on mainframes and 
significantly precedes the availability of desktop computers and their specialized, largely 
point-&-click software tools.  The simulation educator, whether teaching within a college of 
engineering (and most likely the sub-discipline of industrial engineering) or within a college 
of business or management, has various valuable opportunities to emphasize the reliance of 
simulation upon prerequisite and concurrent course work.  Likewise, educators in related 
disciplines have opportunities to stress the usefulness of material taught in their courses to 
simulation analyses.  When fully exploited, these cross-fertilization opportunities enhance 
collegiality, student motivation, and retention and integration of important concepts and 
techniques.  In this paper, we explain these opportunities, particularly with respect to 
statistical concepts, computer analysis and programming skills, industrial engineering and 
managerial observations, and interpersonal and teamwork skills.  Broadly stated, we 
undertake the examination of both “how the simulation educator can support the educator of 
related disciplines,” and the converse “how the educator of disciplines related to simulation 
can support the instructor of simulation.” 
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1 Introduction 

A course in discrete-event process simulation is 
frequently offered within, and considered an important 
component of, either or both of the industrial 
engineering and/or the business management curricula 
at the university undergraduate level.  Such a course 
almost invariably has as a prerequisite a course in 
probability and statistics, and this course in turn 
usually presumes knowledge of calculus.  
Furthermore, students in a discrete-event simulation 
class typically have (and even been required to have) 
computer familiarity and competence including the 
use of spreadsheets and mild to moderate experience 
programming in a computer language such as C++ or 
Java [1].  Sometimes, especially in Europe, the 
simulation class includes the expectation that the 
students will program simulation models in one of 
these computer languages, or even a simulation-
specific language such as GPSS.  Or, more commonly 
in the United States, the simulation class will 
introduce a simulation software package such as 
Arena®, AutoMod®, ExtendSim®, or WITNESS® 
and require students to build and analyze models using 
that package.  Irrespective of the tool used to build 
simulation models, students ideally are expected to 
work in teams to select a simulation project; gather 
and analyze pertinent data on the system to be 
modeled; build, verify, and validate the model; 
analyze the results; and present these results to the 
educator and the client – a local company, perhaps the 
employer of one of the students on the team.  As a 
long-term beneficial effect, if the client company is 
new to simulation, this project (essentially free from 
the client company’s viewpoint) will become 
acquainted with the capabilities of simulation.  In 
view of these expectations for the discrete-event 
simulation course, there are numerous opportunities 
for the instructor teaching it to reinforce and augment 
learning undertaken in the prerequisite and co-
requisite courses, such as supply-chain analysis, 
ergonomics, and facility layout analysis, “illustrating 
the importance of educating engineering students to 
think across course and discipline lines [2].  In this 
paper, we will examine these opportunities with 
respect to statistics, data collection and analysis, 
behavioral science from the industrial engineering 
viewpoint, computer software development concepts, 
and the importance of teamwork, interpersonal 
collaboration, and both oral and written 
communication [3].  Likewise, the instructors of 
prerequisite classes, most particularly the statistics 
class, have opportunities to motivate students by 
drawing attention to how concepts taught therein will 
be useful in discrete-event simulation.  Surely every 
statistics educator has been asked many times in the 
classroom “Why do we have to study this?”  One of 
many good answers is “These statistical concepts will 
help you analyze stochastic variation, and one of 
many good reasons to do so involves the building of 

simulation models to evaluate proposed improvements 
to business systems, whether manufacturing or service 
(such as health care) delivery.”  When fully exploited, 
these opportunities enhance and reinforce student 
learning, promote collegiality within academic 
departments, and increase coherence of academic 
program integration within either management or 
industrial engineering disciplines.  Hence this paper 
undertakes the examination of both “how the 
simulation educator can support the educator of 
related disciplines,” and the converse “how the 
educator of disciplines related to simulation can 
support the instructor of simulation.” 

2 Simulation Practice Reinforces 
Statistical Concepts 

The instructor teaching a simulation course should 
seize numerous and important opportunities, listed in 
this section, to emphasize and reinforce statistical 
concepts typically taught in a prerequisite course 
(usually this statistics class, whether for students 
majoring in industrial engineering or in business, has a 
calculus prerequisite).  In a conference panel 
discussion devoted to management of simulation 
technology in large companies [4], all panelists 
concurred on the importance of this prerequisite.  
Interestingly, the panelist (Professor Roger Klungle) 
most accustomed to simulation in service industries, 
recommended two such courses as prerequisite. 
 
Most vitally, the importance of variability, and hence 
statistical techniques to analyze it quantitatively, in the 
practice of simulation can hardly be overemphasized.  
In the manufacturing sector, variability is inevitable 
(e.g., duration of downtimes, quality of incoming raw 
material, manual cycle times, etc.).  In the service 
sector, variability is often greater still; as [5] stated 
flatly in a tutorial on simulation in health care, 
“Variation matters.”  He gives two vivid examples:  
(1) the unpredictable length of time a therapist will 
need to interview a husband and wife on a marital 
problem, and (2) a hospital emergency room serving 
five different categories of patients classified by 
means of arrival and degree of urgency – and there 
being variation within each group also. 
 
One of these collaborative opportunities consists of 
warning simulation-analysts-in-training to beware of 
the seductively convenient probability formula 
p(A∩B) = p(A) × p(B).  Since this computation 
assumes independence of the events A and B, the 
simulation analysts must beware of perhaps latent 
dependence.  For example, in the first draft of a model 
of an drive-through oil-change facility, probability 
distributions for the drainage time of the old (to be 
replaced) transmission fluid and for the drainage time 
of the old engine oil were sampled separately and 
sequentially from the built-in distributions provided 
by the statistical software package.  This model 



construction tacitly assumed independence of these 
drainage times.  Examination of a scatter plot of the 
two drainage times for each vehicle showed strong 
positive correlation, since larger vehicles tend to carry 
more of each fluid.  Correction of the model 
appropriately lengthened the predicted vehicle queue 
lengths and time in queue [6].  Opportunities abound 
to use this lesson in many fields of practical 
application of simulation.  For example, the larger 
refrigerator may need both more assembly time and 
more painting time; the sicker patient may need both 
more doctor-interface time and more laboratory tests.  
Examples like these represent shining opportunities to 
repeat the homily “Correlation does not necessarily 
imply causation.”  For example, the larger 
transmission-fluid reservoir did not in and of itself 
increase the size of the oil tank. 
 
Another opportunity the simulation educator should 
seize is correction of the common misconception that 
the “normal” distribution is the state of normalcy in 
almost any stochastic process, and hence other 
distributions often appropriate for simulation 
modeling (e.g., Weibull, gamma, lognormal) are rare, 
exotic exceptions to this expectation.  Indeed, it may 
be an unfortunate accident of history that the 
misleading name “normal” distribution has almost 
entirely supplanted (in both North America and 
Finland) the name “Gaussian” distribution.  To correct 
this common misconception, the simulation educator 
should provide examples of actual stochastic process 
data (e.g., cycle times, downtime durations, or times 
to equipment failure), with emphasis on their 
descriptive statistics (lack of symmetry in the 
histogram, impossibility of negative values, and 
conspicuous positive skewness).  Further examples 
will surely appear, as the students can be assured, 
when they begin collecting data for an assigned 
simulation project. 
 
Still another vital point of emphasis to be stressed by 
the simulation educator is the statistical principle “A 
sample size of 1 is too small.”  Particularly among 
students who have significant experience in computer 
programming and/or have taken several classes in this 
field (e.g., classes in Java, C++, and the like), the 
temptation to think “Excellent!  My simulation model 
(or computer program) has now run to completion and 
produced sensible output.  That part of the study is 
complete” looms large.  These students need vigorous 
reminding that each run of a validated simulation 
model is a separate experiment – with different 
generated random numbers to model stochastic 
variation within the model – and, as such, produces 
results representing one data point in a simple random 
sample.  Subsequently, from that simple random 
sample, a confidence interval will be constructed 
and/or a hypothesis test will be conducted.  At this 
point in the students’ training in simulation, the 
instructor does well to remind them “If you want a 

confidence interval only half as wide, you must – 
other things (e.g. variability) remaining equal, you 
must make four times as many runs.  That number of 
runs is properly called the ‘number of replications.’” 
[7].  After this foundation is laid and confirmed, the 
simulation student is ready to comprehend the issues 
involved in choosing a steady-state versus terminating 
simulation, and to select the warm-up time appropriate 
to a steady-state simulation. 
 
Furthermore, the simulation educator will almost 
surely have opportunities to motivate students to 
extend their basic prerequisite statistical knowledge to 
learn and use Design of Experiments (DOE).  This 
opportunity is likely to knock when a team conducting 
one of the simulation projects remarks “The client is 
interested in investigating three queuing disciplines, 
two conveyor capacities, and four potential staffing 
levels – that’s 3 × 2 × 4 = 24 pairwise t-tests to run.”  
This moment is the motivational opportunity to 
mention the power of DOE, and to explain that it can 
additionally detect interactions:  “A larger conveyor 
might not raise throughput much, and a higher staffing 
level might not raise throughput much, but 
implementation of both might raise throughput 
significantly.”  The educator may well also remark 
“Once the simulation is verified and validated, 
additional data points and multiple replications cost 
very little.  Consider your colleagues in the 
Mechanical Engineering department, for whom each 
DOE data point might represent the building and 
testing of a costly prototype.” [8]. 

3 Simulation Class Introduces Messy 
(Non-Existent?) Data 

Excerpts from an exercise in a textbook frequently 
adopted by the second author are:  “Orders are 
received for one of four types of parts.  The 
interarrival time between orders is exponentially 
distributed with a mean of 10 minutes.”  The exercise 
then proceeds to specify, for example, that 20% of the 
parts are type “C,” with processing time normally 
distributed with mean 11.8 minutes and standard 
deviation 4.1 minutes. [9].  An exercise such as this 
represents an excellent stage on which the instructor 
can first guide the students in building a basic 
simulation model, whether with a programming 
language or a simulation software package.  Before 
too long, the normal distribution specified will 
generate a negative processing time – or produce an 
error message after trying to do so.  This moment is a 
very propitious moment to introduce ideas pertinent 
not only to simulation, but to many other endeavors 
pertinent to industrial engineering, such as value 
stream mapping, time-&-motion studies, supply chain 
analysis, and ergonomic analysis.  The instructor, 
often abetted by the more eager students, might well 
raise these questions: 



 Is this normal distribution, with coefficient of 
variation 4.1/11.8 > one-third, a plausible model for 
the cycle time? 
 Is any normal distribution (c.f. above) a 
plausible model for the cycle time? 
 When you undertake a real-world simulation 
study and ask the production line supervisor “How 
long does this process take for type ‘C’ parts?”, is he 
or she likely to provide an answer like “It’s normally 
distributed with mean 11.8 and standard deviation 
4.1.”  The student whose viewpoint is “Did I get the 
answer in the back of the book?” will answer “Yes;” 
the more educationally mature student will answer 
“No.” 
 
Students are now more steeled against revelations 
such as “On a ‘good day,’ the client will have some 
tabulated data ready for analysis (are those data on 
scraps of paper or in a spreadsheet file?)  On a ‘bad 
day,’ we, the industrial engineers, will need to collect 
the data.”  They will come to understand that in a 
simulation study – and many other types of industrial 
engineering studies – collection and analysis of 
required input data may require significantly more 
effort and time than building, verifying, and validating 
a model. 
 
Data collection activities required to undertake the 
students’ first simulation project often provide another 
vivid flash of reality – the multimodal distribution.  
For example, data collection may involve observing 
the receptionist at a health clinic greeting and 
providing basic registration services to patients.  If the 
histogram of these cycle times indicates bimodality, as 
well it may, the educator ought to ask the students 
“Are there really two data sets here – the generally 
shorter registration times for arriving patients who 
have visited this clinic previously, and the generally 
longer registration times for arriving patients who are 
new?”  This question should motivate the student 
modelers to observe further and ask pertinent 
questions of the receptionist.  Very possibly, the 
desired outcome will be documentation of the relative 
proportions of previous versus new patients, and two 
fitted distributions used in the model – one for each 
type of patient.  Indeed, [10] make reference to this 
type of deeper investigation of data relative to patient 
discharge-processing times in an acute-care hospital.  
Additionally, the exigencies of collecting data, 
particularly in a service-delivery system, are likely to 
arise here and should be emphasized by the educator.  
Most conspicuously, the Hawthorne effect is well-
nigh certain to arise, sooner rather than later, when 
data collection begins [11].  Students should be 
referred to their ergonomics course (whether previous, 
concurrent, or impending) relative to the Hawthorne 
Effect.  A similar consideration frequently arises when 
repair times required by a particular machine or item 
of production equipment are examined and plotted.  A 
bimodal (or even multimodal) histogram of such 

repair times implies that the data set of machine 
downtime durations is really two (or more) data sets, 
each such set being pertinent to a particular type of 
failure which has its own frequency of occurrence and 
characteristic repair time required. 

4 Development Of Work Observation 
And Measurement Skills 

Undertaking a simulation project, with its inherent 
necessity of on-site observation and data collection, 
hones the work observation and measurement skills 
industrial engineering students will also need for 
endeavors such as value stream mapping, workload 
leveling, and ergonomic analysis.  Aside from 
attention to the Hawthorne Effect just mentioned, the 
educator should alert students to watch alertly for 
“hidden behaviors” such as the following – rarely 
mentioned in textbook exercises: 
 The cashier chats less with customers and 
may work faster as the waiting line increases in 
length, thereby lowering cycle time [12]; 
 When feeling psychologically pressured by 
conspicuously large backlogs of items to be processed, 
production workers may take shortcuts – even to the 
point of dangerously circumventing safety procedures; 
 When modeling passenger arrivals at a bus 
stop, it is convenient and reasonable to use an 
exponential distribution – but very likely the arrival 
rate, instead of being constant, increases as the 
scheduled arrival time of the next bus draws near [13]. 
 When workload in a wing of a hospital waxes 
heavy, the floor nurse of that unit may conveniently 
“forget” to tell the supervisor of the emergency room 
that beds in that wing are still vacant, thereby 
triggering delays and backlogs in the emergency room 
– a practice known as “bed hiding” [14]. 
 
Additionally, simulation models are often directly 
valuable within the industrial engineering sub-
discipline of ergonomics, for improving conditions for 
the worker at industrial workstations.  To this end, the 
techniques of modeling and simulation are best 
combined with three-dimensional visualization and 
integration of ergonomics standards such as (in the 
United States) those of NIOSH [National Institute for 
Occupational Safety and Health] [15]. 

5 Reinforcement Of Computer Science 
Concepts 

Since simulation model building, verification, and 
validation has much in common with computer 
software design and implementation, the simulation 
educator has ample opportunities to reinforce lessons 
presumably already emphasized in a basic 
programming course (which may have been taught 
using C++, Java, or another object-oriented language).  
This opportunity exists even if the simulation course 
uses a simulation software package instead of a 



programming language, since it is a myth that using 
simulation packages eliminate the need for “coding” 
[16].  Many simulation educators strongly advocate 
that even if the students will ultimately use a 
simulation package, a first small model exercise (e.g., 
the traditional “barbershop model”) should be built in 
a general-purpose language.  Such an exercise forces 
students to come to grips directly with fundamental 
concepts such as the current events chain, future 
events chain, time ties for entity processing, and 
management of the underlying simulation clock.  
Having undertaken such an exercise, the student who 
later models with a package will be strongly motivated 
to read the dry documentation on exactly how the 
package handles these concepts and issues – and this 
“how” varies subtly but importantly across simulation 
software packages [17].  These lessons include the 
importance of modular design and development of the 
model, piecewise verification and validation, tracing 
of the model execution (often from the viewpoint of a 
single entity), structured walkthroughs, and other 
techniques [18].  Hence, when students (inevitably) 
encounter frustrating problems with models 
functioning incorrectly or illogically, (and, indeed, 
even before such problems appear), the wise instructor 
will ask students “When you have written computer 
programs, what steps did you take to reduce the need 
for debugging and to make debugging more 
efficient?”  Students who receive this help, plus its 
implicit message that modeling difficulties are normal 
and can routinely be overcome, will be much more 
capable modelers, whether in research or commercial 
applications. 
 
As an additional reinforcement, especially when 
student teams begin comparing various user scenarios, 
the instructor should suggest, for example, “Rather 
than changing the conveyor speed in the model, enter 
the speed in a spreadsheet and read it into the model.  
Users feel much more comfortable handling model 
input that more convenient way.  Remember how your 
computer programming instructor advised not ‘baking 
constants into programs’?” 

6 Synergy Between Business And 
Engineering 

As mentioned in the Introduction, at a given 
university, simulation may be taught in the college of 
engineering, the college of business, or both.  In either 
case, it is fundamentally incumbent on the simulation 
educator to consistently and strongly emphasize 
synergy between the two disciplines – engineering 
supports business objectives.  In service of this duty, 
the instructor in either venue should heed the advice 
of Professor Ståhl (a pioneer in recognizing this 
synergy) [19] by emphasizing the “importance of 
physical flows and of production economics,” and the 
significance of “the relationship between physical 
flows and financial flows.”  Also, the rapidly 

increasing importance of logistical and supply chain 
efficiency, which is drawing attention in both 
industrial engineering curricula and business curricula, 
enhance the attractiveness of using simulation to 
attack logistical problems.  Several instructive case 
studies and valuable software components directed 
toward the goal of integrating simulation education 
into logistics appear in [20].  In a business curriculum 
where the constraint of teaching simulation using only 
spreadsheets (as contrasted to specialized commercial 
and/or university-developed simulation software tools) 
prevails, [21] offers very helpful advice. 

7 Conclusions 

The privilege and challenge of teaching simulation 
comes with a high responsibility to help train the next 
generation of industrial engineers in a powerful 
technology.  The educator can best discharge this 
responsibility by: 

1. Devoting attention, both in course 
development and within the classroom, to 
the close relationships simulation has with 
other sub-disciplines of industrial 
engineering 

2. Ensuring that the students’ statistical 
background is adequate, appropriately 
reviewed, extended as necessary, and 
properly applied to analysis of both 
simulation input data and output results 

3. Noting that simulation input data in 
practical and research applications is 
typically messy, and costly (in money, 
time, and the reservoir of client-engineer 
goodwill) to obtain 

4. Acknowledging that the discipline of 
simulation owes much of its current 
maturity to the contributions of computer 
scientists and computer software 
developers. 
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