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Abstract

Developing hybrid systems which combines software, electronics and mechan-
ics is very complex and can lead to delayed projects and erroneous products.
By utilizing system-level models, a more complete picture of the system can be
produced very early in the development process, and thereby reducing the pos-
sibilities of errors due to misunderstandings across domains. In addition, this
approach focuses on system-level optimization, instead of super-optimizing the
individual sub-systems, which will lead to overall better performance. Many re-
search projects have attempted to tackle the challenges in hybrid systems devel-
opment, but few have gained acceptance in industry. This paper describes a new
project called ”Development Process for Multi-Disciplinary Embedded Control
Systems”, which aims at describing a model-driven development process, attempt-
ing to bridge the gap between academia and industry needs. The methodology
under development will describe how continuous-time and discrete-event models
are to be combined in a co-simulation of the entire system, for use in the early
design phases of embedded systems. The developed methodology will be tried
out on several safety-critical embedded system case studies from the industry, in
order to make sure it fits into existing development processes.
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1 Introduction

The development of hybrid systems consisting of soft-
ware, electronics and mechanical components which
are operating in a physical world is a very complex
challenge [1, 2]. The task is made even more challeng-
ing due to the fact that these types of systems often are
developed out of phase – initially the mechanical parts
are designed, followed by electronics and finally soft-
ware is designed. Any problems discovered late in the
development process, can really only be corrected in
the software without causing huge delays to the com-
plete project due to longer iterative cycles in electronics
and mechanical development. These very late changes
often increase the complexity of the software and the
risk of introducing new bugs. Hence, an otherwise well
thought-out software design can be compromised. In
order to avoid situations like this, early feedback at a
systems level is invaluable.

Model driven development can address some of these
challenges. Normally, the different types of engineers
involved in the development of a hybrid system make
use of domain specific tools in order to create mod-
els of the individual parts of the system. This enables
the individual disciplines to optimize one specific part
of the system. By creating abstract high-level multi-
disciplinary models of the entire hybrid system and the
ability to run a co-simulation of these, system engineers
will be able to reason about system-level properties of
the control system across multiple disciplines. This will
ensure early feedback on system properties, as well as
ease communication across different disciplines, since
the impact of a given design decision can be made visi-
ble to the entire team.

This paper describes a new project (Development Pro-
cess for Multi-Disciplinary Embedded Control Sys-
tems) which focuses on model-driven development of
safety critical systems which control their physical sur-
roundings. Using existing tools, multi-disciplinary
models will be created in order to analyze the method-
ology used for model-driven development, as well as
give to suggestions to how this methodology can fit into
existing development processes used in industry.

The challenges in embedded systems development are
described from an industrial point of view followed
by an overview of academic research projects which
aim at overcoming these challenges in Section 2. This
section will make it clear that there is a long way
from the industrial challenges to current solutions sug-
gested by academia. Following this, current state of the
art in model-driven development is described in Sec-
tion 3, with main focus on the tools used in the differ-
ent engineering disciplines. In order to fully describe
current state-of-the-art model-driven development, re-
search on model-driven methodology is summarized in
Section 4. A quick overview of the expected outcome
of the project as well as expected research activities are
described in Section 5. Preliminary research results are
described in Section 6 followed by a brief summary in
Section 7.

2 Embedded Systems Design Challenges
In order to develop hybrid systems, engineers from dif-
ferent backgrounds and with diverse fields of expertise
are involved, making communication much harder than
in mono-disciplinary projects. It is close to impossi-
ble for each individual engineer to foresee all the cross-
discipline consequences of a given design decision.

Initially, the industrial challenges on hybrid system de-
velopment will be described from an embedded systems
specialists point of view. Following this, several aca-
demic research projects will be listed in order to show
that academia has not adequately solved all of these in-
dustrial challenges.

2.1 Industrial Point Of View

At the core of the tough challenges real-world devel-
opment teams building embedded systems face, is bal-
ancing quality versus schedule versus features. To be
able to ship a very high quality product on-time requires
team members to have the wisdom to start demystify-
ing what is being built from day one. This requires
that all team members have at the very least a systems-
level understanding of the system, and a solid technical
foundation of the components that make up the design.
One of the common mistakes made is not investigating
or understanding the complete embedded systems, the
components that can make up the device, as well as the
impact of individual components on each-other.

For instance, hardware engineers need to demystify the
software layers, and understand the software require-
ments. This includes everything from device drivers to
operating systems to middleware to the application soft-
ware components. This is because target system hard-
ware requirements depend on the underlying require-
ments of the software, and must ensure that the required
IO (input/output) is available, the target hardware has
sufficient memory of the right type, and the processor
is powerful enough for example.

On the flip-side, programmers with a purely software
background that are accustomed to developing on PCs
or larger computer systems, are often intimidated by the
embedded hardware and tools. Thus, many teams end
up using PCs themselves as both target and host in the
place of available target hardware to do development
and testing. In this case programmers do not recognize
the importance of using some type of reference hard-
ware and/or simulation platform that reflects the tar-
get. When using PCs in the place of target hardware,
programmers then make software design decisions that
would cause failures on the embedded target hardware,
because of the mistake of treating embedded hardware
like it is a Windows-PC desktop. Developing for an em-
bedded hardware target is not like developing on a PC
as the target. Meaning, software executing on a PC of
GHz of processing power and Mbytes of memory will
not behave the same (or even run at all) when trying
to run that same software on an embedded board with
MHz of processing power and Kbytes of memory.

When focusing on innovation, it becomes necessary to



ruthlessly address the costly competitive challenges that
have arisen due to software taking on major relevance
within the successful production of a product line. This
software trend is consistent with what has been happen-
ing through out technology companies, across all indus-
tries. There has been a dramatic growth in projects with
increased system software complexity, rising time and
cost pressure, as well as higher quality demands. In
fact, in many projects where software plays a signifi-
cant role, the software-related life-cycle costs are often
significantly underestimated.

First, there is not enough focus on software from the
start. For better or worse, the reality is that core
software design decisions and a majority of software-
specific product life-cycle costs are defined and driven
at the start. The most common triggers that result in
negative software-related consequences – from system-
level failures to large cost overruns – are due to the con-
sequences of these design decisions. Second, it is very
costly to bypass software development best practices in
a short-term effort to save time and money. The chal-
lenges of balancing the delivery of a high quality prod-
uct that meets requirements, on-time, all while main-
taining a profit places these goals constantly at odds
with each other. In a software-intensive, fast-paced
project the way to guarantee vast amounts of money
will be squandered is when developers do not have the
right development process for innovation in place. This
methodology is what provides the foundation for the
no-nonsense, best-practice discipline necessary for de-
veloping best-in-class software, faster.

For example, throwing programmers at a project with-
out the right software development infrastructure will
only increase costs and decrease efficiency. This is be-
cause, the more people added on ad-hoc to a project, the
more interruptions programmers have to manage. An-
other example is when programmers, in an attempt to
save time, cut corners and ignore key best practice ap-
proaches in the software development process. When
programmers do this, it results in code being developed
more slowly – that is more expensive to develop and
maintain. This is because not using a proper method
and bypassing these best practices when programming
results in badly written software will consume more de-
velopment effort than well written source code to try to
complete the project. Fixing software defects consumes
a big chunk of software development costs, and of the
schedule in debugging and testing. So, by using for ex-
ample hardcore code inspections, it becomes cheaper
than debugging, and result in a reduction of debugging
time and logistical maintenance of the code after soft-
ware release.

Developing and deploying innovative technology and
product solutions requires a powerful approach that ad-
dresses the reality that the process of successfully en-
gineering a product cannot be applied to all types of
engineering. Meaning, to successfully and profitably
create innovations to technology requires an inherently
different approach, a model that supports an integra-
tion of a more dynamic business and engineering frame-
work. This model is the foundation that actively man-

ages the uncertainty in creative innovation of technol-
ogy, providing the flexibility to efficiently and strate-
gically adapt to constantly changing circumstances and
needs of projects that require a more creative, dynamic
approach to be profitable. Industry needs this missing
stepping stone to insure that the necessary engineering
support, data, training and/or guidance is available that
maximizes profits for least amount of risk for an inno-
vation.

2.2 Academic Research Projects

In the academic world, hybrid systems have been
considered for more than a decade starting from a
fuzzy logic perspective [3] to an automata perspec-
tive [4]. Since then, many academic research projects
have attempted to tackle the challenges for developing
such multi-disciplinary systems in predictable fashions.
These include:

• AVACS investigates automatic verification and
analysis of complex systems in particular hybrid
systems using model checking.

• COCONUT addresses the design and verification
of modern embedded platforms by focusing on the
formal specification of software and compilation,
formal refinement and formal proof.

• CREDO focuses on the development and appli-
cation of an integrated suite of tools for compo-
sitional modeling, testing, and validation of soft-
ware for evolving networks of dynamically recon-
figurable components.

• DEPLOY is a major European FP7/IP address-
ing the industry deployment of formal methods for
fault tolerant (discrete event) computing systems.

• INTERESTED focuses on creating a reference and
open interoperable embedded systems tool-chain.
The project’s main focus is on discrete event tools
for graphical overview and code generation, and
not on co-simulation.

• MEDEIA aims to bridge the gap between engi-
neering disciplines in the discrete engineering do-
main, by using containers that contain design mod-
els from various disciplines which can be seam-
lessly interconnected. Like the INTERESTED,
MEDEIA aims to connect tools in the discrete
event domain.

• MOGENTES aims to significantly enhance testing
and verification of dependable embedded systems
by means of automated generation of efficient test
cases.

• PREDATOR aims to advance the state of the art in
the development of safety-critical embedded sys-
tems focusing on timing aspects.

• PRODI aims to develop and test new and improved
fault detection and isolation techniques, tailored to
the complex area of power systems.



• QUASIMODO aims to develop techniques and
tools for model-driven design, analysis, testing
and code-generation for embedded systems where
ensuring quantitative bounds on resource con-
sumption is a central problem. It focuses on for-
mal notations for timed, probabilistic and hybrid
systems that can be subjected to exhaustive state
space analysis techniques such as model checking.

• SPEEDS focus on tool-supported collaborative
modeling for embedded systems design.

• TOPCASED is developing an Eclipse-based IDE
for critical embedded systems with an open source
approach.

• VERTIGO aims to develop a systematic method-
ology to enhance modeling, integration and veri-
fication of architectures targeting embedded sys-
tems. It will use a co-simulation strategy that
allows the correctness of the interaction between
HW and SW to be assessed by simulation and as-
sertion checking.

Many of these projects have a very academic approach
to system modeling, and hence can be hard to apply in
the industry. In order to successfully solve the chal-
lenges seen in industry, it is clear that closer coopera-
tion between academia and the industry is needed.

In 2007 the major stakeholders for embedded sys-
tems in Europe have jointly started the organization
ARTEMIS (Advanced Research & Technology in Em-
bedded Intelligence and System). They have defined a
Strategic Research Agenda (SRA) to focus on the main
challenges for the future. In this SRA it is explicitly
stated that there is a need for multidisciplinary, multi-
objective, systems design techniques that will yield ap-
propriate price/performance for acceptable power and
with manageable temporal behavior.

One of the main concerns of the industrial Ph.D. project
described in this paper is to bridge the gab between in-
dustry and academia by ensuring that the project out-
come solves actual issues seen in industry. In addition,
it is of great importance that the final methodology de-
scribed fits into existing development methods used in
industry, and hence can be applied directly.

3 Model-Driven Development
A major challenge in model-driven development of hy-
brid systems, lies in the combination of the models used
by the different disciplines involved in the development
of the system. As long as the models lies within the
same domain, this challenge is of limited complexity.
When combining models from different domains like
continuous-time and discrete-event models, the chal-
lenge is significant, and as will be argued this has not
yet been done in a satisfying manner.

3.1 Discrete-Event Modeling

Software engineers can make use of discrete-event
models when specifying the logic of the controller of

an embedded system. Formal methods can be used to
describe these models, where a mathematically based
notation enables the engineer to rigorously describe and
analyze the properties of the controller. The motivation
of using these models is to precisely describe the de-
sired properties of the systems, while applying a higher
level of abstraction to less important parts of the system.
For example, device drivers and hardware components
can be excluded from the model, enabling the software
engineer to focus on the algorithmic challenges of the
controller.

Several different discrete-event notations are used in
industry and academia. Without a doubt, one of the
most commonly used technique in industry is the Uni-
fied Modeling Language (UML) created by the Object
Management Group. UML enables engineers to cre-
ate several different views of the software under design.
For example, requirement specification using use-case
diagrams, static architecture using class diagrams and
dynamic behavior using sequence diagrams. Industrial
strength tools like IBM Rational Rhapsody enables the
software engineer to code generate full C/C++ and Java
code from a complete suite of UML diagrams, in order
to uncover defects earlier in the product life cycle.

In object-oriented formal languages, like the Vienna
Development Method (VDM++) [5], the desired func-
tionality of the controller can be described at the desired
level of abstraction. This is a major advantage, since the
model can describe the current problem at hand, and
disregard all other parts of the system. VDM supports
abstract data types, pre- and post-conditions as well as
invariants which adds to the expressiveness of the lan-
guage, enabling the user to define expected behavior of
the system. A real-time extension of VDM exists called
VDM-RT [6], where real-time systems can be modeled
as well as distribution and asynchronous communica-
tion. VDM is supported by the industrial tool VDM-
Tools [7] as well as the open source initiative Overture
[8]. Both tools enable the user to make transformations
between VDM and UML class diagrams.

3.2 Continuous-Time Modeling

In classical physics, aspects like movement, acceler-
ation and force are described using differential equa-
tions. Naturally, models of the environment in which
an embedded system is operating is best described us-
ing differential equations as well. Whereas continuous-
time models excel at describing physical movement,
hydraulics and pneumatics. These types of models,
however, generally lack the possibility to apply the cor-
rect level of abstraction to the discrete-event controller.

In industry Matlab/Simulink [9] created by MathWorks
is without a doubt one of the most widely used tool
for creating continuous-time models. Matlab is a high-
level language and interactive environment which per-
form computationally intensive tasks very fast com-
pared to traditional programming languages. Simulink
is an environment for multi-domain simulation and
Model-Based Design for dynamic and embedded sys-
tems. It provides an interactive graphical environment



and a customizable set of block libraries which lets the
user design, simulate, implement, and test a variety of
time-varying systems, including communications, con-
trols, signal processing, video processing, and image
processing.

20-sim [10] is a modeling and simulation tool for dy-
namic systems, such as electrical, mechanical and hy-
draulic systems or any combination of these. This tool
fully supports graphical modeling, allowing design and
analysis of dynamic systems in an intuitive and user
friendly way. 20-sim supports the use of components,
enabling the engineer to choose predefined components
from a library and connecting these. In addition, the un-
derlying technology, Bond Graphs, can be used directly
in order to model dynamic behavior. It is also possible
to export 20-sim models to Matlab/Simulink.

3.3 Combining Discrete-Event and Continuous-
Time Models

Whereas the individual technologies and tools de-
scribed above excel at creating models in their specific
domain, few (if any) are suitable for modeling systems
operating on both discrete-events and in continuous-
time. The Stateflow application from MathWorks ex-
tends Simulink by allowing the use of language ele-
ments to describe complex logic. It is tightly integrated
with Matlab and Simulink, and provides an environ-
ment for designing embedded hybrid systems. Mat-
lab is a very efficient tool for algorithm development
and large calculations, but lacks the possibility of using
object-oriented architecture. The tool chain is also lim-
ited in the inability to apply a higher level of abstraction
to parts of the system not currently in focus.

Another approach to combine discrete events and con-
tinuous time is to use discrete abstractions of the con-
tinuous elements. This approach was originally pro-
posed by Alur et al. [11] who uses the first derivative
of a continuous signal as well as state changes as dis-
crete events which can be simulated with the remain-
ing discrete parts of the system. An example of this
can be seen in Fig. 1. Every time the signal crosses a
threshold, and at every local maximum and minimum
a discrete event is generated. This has the unfortunate
side effect that all notions of time is lost in the continu-
ous time model. If this is acceptable for the problem at
hand, this method can be used to great success. But es-
pecially if real-time aspects of the system is of interest,
valuable information is lost.

The project ”Ptolemy2” [12] from University of Cali-
fornia, Berkeley allows modeling, simulation and de-
sign of concurrent real-time embedded systems within
multiple domains such as discrete-time, continuous-
time, dynamic data flow, state machines and more
[13, 14]. A special build-in tool HyVisual is es-
pecially suited for modeling hybrid systems, where
continuous-time components are modeled using block
diagrams and discrete-event controllers are modeled us-
ing state machines. Unfortunately Ptolemy2 has not
gained ground in the industry, perhaps because engi-
neers would like to continue using the same tools they

Fig. 1 Discrete abstraction of continuous-time

are accustomed to. In addition, it is not possible to
formally verify Ptolemy2 models due to lack of formal
definition of the semantics.

The project ”Design Support and Tooling for Embed-
ded Control Software” (DESTECS) [15] aims at cre-
ating a methodology and open tools platform for the
collaborative and multidisciplinary development of de-
pendable embedded real-time control systems. The
methodology combines continuous-time and discrete-
event modeling via co-simulation, allowing explicit
modeling of faults and fault-tolerance mechanisms
from the outset. Continuous-time models are expressed
using bond graphs supported by the 20-sim tool while
discrete-event controllers are modeled using VDM sup-
ported by the Overture tools. This project holds great
promise both regarding tools and methodology, and will
be followed closely throughout this project.

4 Model-Driven Methodology
Just as important as the individual technologies and
tools, is a thoroughly described methodology of how
to exploit the possibilities provided. For the mono-
disciplinary tools several methods have been described.
Prior work [16] suggests how a VDM-RT model should
be developed through a sequence of steps, each adding
more details to the model. One aspect of this method
which is still lacking is a description of how to deter-
mine the requirements of a system. This challenge is
the main focus of Hayes, Jackson and Jones [17, 18],
who argue that the specifications of a system should
be derived formally from a description of required phe-
nomena in the physical world in which the system will
operate. Combining these two methods, will result in a
complete description of how requirements of the system
is determined, how these requirements are incorporated
in a VDM model, which is refined through a series of
steps to finally end up with a VDM-RT model defin-
ing timing aspects and distributed nature of the system.
This method is focused on development of discrete con-
trollers, and as such does not try to counter the chal-
lenges of combining models from different domains.

Agile methods are used increasingly in industry, since
many companies have realized the importance of a
close cooperation with the customer or end user. Even
for safety critical systems, agile methods can be used



– usually a hybrid approach is used though, where all
requirements are defined in a traditional fashion, fol-
lowed by a more agile approach to the day-to-day devel-
opment of the system. This ensures that the customer
gets several running prototypes based on which feed-
back can be provided, ensuring that errors or misun-
derstandings are caught early on. The combination of
formal and agile methods have been researched in [19],
which indicate that there is no reason not to combine
these two approaches in order to get the best of both
worlds.

Only little research in methods for multi-disciplinary
model-driven development has been carried out. The
project ”Beyond the Ordinary: Design of Embed-
ded Real-Time Control” (BODERC) from University
of Eindhoven in The Netherlands suggests a model-
driven design process. They demonstrate how to rea-
son about system properties by making abstract high-
level and multi-disciplinary models. The BODERC de-
sign methodology consists of a system-level reasoning
framework and plug-ins that are used during system de-
sign to get more in-depth insight. For this system-level
reasoning BODERC suggests using the CAFCR method
[20]. This method uses a system architecture descrip-
tion which is divided into 5 views, which together de-
scribe what the customer wishes, what the desired func-
tionality of the system is and how the system should be
implemented.

5 Project Objectives
Inspired by the previous research introduced in Sec-
tion 4, the project ”Development Process for Multi-
Disciplinary Embedded Control Systems” aims at cre-
ating a methodology describing how the model-driven
development ideology fits into existing and well proven
classic development methods. The methodology will
describe when co-simulation is the right approach and
how the complete system should be divided into the
continuous-time and discrete-event domains. It is the
goal to create a golden reference to be used when uti-
lizing co-simulation of system-level models during the
development of embedded systems. It is the hypothesis
that shorter time-to-market can be achieved by using
co-simulation at the system-level. The time invested in
analyzing models and co-simulation is gained later in
development because of fewer errors. A more optimal
design at the system level is achieved, and thereby im-
proving the price/performance of the final product.

As part of achieving the overall goal of the project, sev-
eral objectives must be met:

1. Evaluate existing tools and methods for creat-
ing continuous-time models, discrete-event mod-
els and multi-disciplinary models. Compile a list
of pros and cons for each tool and method, as well
as estimate the prevalence in industry.

2. Expand prior work to include description of how
system requirements should be derived as de-
scribed in Section 4.

3. Describe a framework for model-driven develop-
ment process. Special focus must be put on devel-
opment methods currently used in industry, since
it is imperative that the model-driven development
fits into existing methods.

4. Demonstrate viability of model-driven develop-
ment of safety critical hybrid systems in an in-
dustrial setting. Software, mechanics and systems
engineers must all be involved in this test, in or-
der to get thorough feedback on the advantages
and disadvantages of the model-driven develop-
ment methodology described.

6 Research Activities
As described above, the project is focused on the
methodology of model-driven development. Even
though the project is still in its initial phases, good
progress has been made with points one and three listed
in Section 5. The following subsections describe these
research activities in more detail.

6.1 Comparison of Continuous-Time Modeling
Tools

Different tools excel at modeling different types of sys-
tems, or excel at different aspects of the modeling pro-
cess – but no single tool does it all. Hence, it is impor-
tant to have an overview of the different tools available
to know the pros and cons of the individual tools in or-
der to make a qualified choice for the problem at hand.

There exists a lot of tools for modeling physical systems
– too many to mention here, and of course too many to
include all of them in a comparative test. For the survey
carried out, four different tools have been chosen. Mat-
lab/Simulink was chosen since it is widely used in the
industry – MathWorks claim that more than 1 million
engineers worldwide use the tool. As a free alternative,
the open-source tool Scilab/Xcos [21] was chosen. This
tool is known by many as the ”Open-source version of
Matlab”. The tool 20-sim has its roots in academia but
is now maintained and further developed by the com-
pany ControlLabs which is an off-spring company from
the Control Engineering Group at Twente University. It
was chosen as an example of a tool which has success-
fully moved into industry. Finally, Ptolemy2/HyVisual
was chosen as a purely academic tool developed and
maintained by the Center for Hybrid and Embedded
Software Systems (CHESS) at University of California
at Berkeley.

The following is a non-exhaustive list of comparison
criteria which are used for the continuous-time model-
ing tools survey:

Accessibility and usability: How easy are the tools to
use with little or no training? It should be noted that the
authors had only little experience with the four tools
prior to the comparison.

Extend model: How easy is it to extend the model with
additional details to gain higher fidelity? It is normal
procedure to start out with a very abstract model, and



later on add details to describe the system more pre-
cisely – the tools should support this approach as best
as possible.

Reuse model: How easy is it to reuse parts of or the
entire model for other systems? Reuse is important in
order to cut down on design time and to avoid errors.
The tools should support the creation of sub-models or
user defined libraries, in order to ease the reuse of parts
of the model.

Visualization: How well do the tools support visual-
ization of data and output of the model? It is common
for modeling tools to visualize output in 2D graphs, but
exporting to data-files or built-in 3D animation tools
would also be an advantage.

A central part of the tools comparison, is the creation of
a model of an embedded system use case using each of
the different tools. The system chosen is a water tank,
with a constant drain and a controllable water source.
An overview of the case study is presented in Fig. 2.

Fig. 2 Water tank case study

The example is very simple, but still contains a lot of
characteristics from an embedded control system. Most
importantly, a model of the case should include both a
continuous-time model describing the change of drain
flow due to pressure from the changing water level, and
a discrete model describing the controller. This will
test the ability of the continuous-time modeling tools
to describe discrete-event controllers. The water tank is
filled by a controllable water source ϕin and through a
drain the output flow ϕout is continuously running. The
controller must make sure that the water level is held
between an upper and a lower threshold.

From a common mathematical model, the water tank
case study was modeled in each of the four tools. Fig. 3
shows the output from the 20-sim model, which clearly
shows how the change of water pressure affects the
drain of water.

Fig. 3 Water tank model 2D graph output

It is still too early to give a clear conclusion of the tool
comparison, but the following gives a quick overview
of some of the findings:

Accessibility and usability: All four tools support the
use of block diagrams, so once the differential equa-
tions of the mathematical model have been derived, it is
quite easy to create a model of the system. 20-sim also
supports the use of iconic diagrams, which are building
blocks of real components e.g. mass, spring and forces.
This makes it easier for new users to start using the tool,
without spending time deriving the underlying differen-
tial equations first.

Reuse model: All four tools support sub-models,
which help to modularize the system model, and
thereby making it easier to reuse some of the compo-
nents. In addition, 20-sim enables the user to create
their own components and to insert these into a com-
monly used library for use in other models. In Matlab,
m-functions can easily be reused as well.

Visualization: All tools support data visual-
ization through 2D graphs. In addition, both
Ptolemy2/HyVisual and 20-sim have built-in 3D
animation tools, where data can be tied to simple
objects like cubes and cylinders, to dynamically change
the position or the size of these objects. The Simulink
3D Animation toolbox provides similar functionality,
but a user would have to pay extra for this feature.

General observations: The commercial tools Mat-
lab/Simulink and 20-sim seem a bit more stable than
the two other tools, which crash from time to time dur-
ing usage.

6.2 Co-simulation Methodology

The initial work on a methodology for using co-
simulation as a tool to develop hybrid systems, is partly
inspired by the work of Hayes, Jackson and Jones
briefly mentioned in Section 4. They make a clear dis-
tinction of the assumptions of the physical parts of the
system or the surroundings in which it is operating, and
the actual requirements of the controller. In short, the
method consists of two steps:

1. Describe the required phenomena in the physical



world; and

2. Derive a specification of the control system.

By making a clear separation of environment assump-
tions and controller requirements, dividing the sys-
tem into the continuous-time discrete-event domains is
made easier. The interface between the two domains is
also being specified in the process, which will be exem-
plified using the water tank case study:

Tab. 1 List of requirements

Id Description

R1 If water level reaches “High level”, the water
source must be turned off

R2 If water level reaches “Low level”, the water
source must be turned on

The water tank only has two simple requirements – to
keep the water level between the “High level” and “Low
level” thresholds. It would be possible to come up with
additional requirements, such as safety requirements
stating what should happen if the water level should
ever exceed the “High level” mark, but this is not con-
sidered in this simple example.

Tab. 2 List of assumptions

Id Description
A1 A ”High level” sensor is installed
A2 A ”Low level” sensor is installed
A3 Controller can read ”High level” sensor value
A4 Controller can read ”Low level” sensor value
A5 Controller can turn the water source on
A6 Controller can turn the water source off
A7 If water source is on, water level is raised
A8 If water source is off, water level is lowered

It is important to be very thorough when specifying all
the assumptions about installed equipment and behav-
ior of the physical world in which the system is oper-
ating. The more detailed the assumptions, the better
the interface between the continuous-time domain and
discrete-event controller will be specified.

When all requirements and assumptions have been
specified, these must be placed in a chart, where nouns
are either in the continuous-time domain, discrete-event
domains or in the interface between the two. Additional
requirements and assumptions describing the relation
between these nouns are drawn as arrows on the chart –
a result of this analysis can be seen in Fig. 4.

The method described above only covers the dissection
of the system into continuous-time and discrete-event
domains, so as a methodology it is highly incomplete.
In spite of this, two pieces of very valuable information
can be gained from the analysis:

• The system is divided into the two domains, which
clearly describes the purpose of the different mod-

Fig. 4 System breakdown chart

els, as well as clearly defining the interface be-
tween the models. The resulting system break-
down chart can be seen as a contract between the
two domains involved. By having a clearly de-
fined purpose of the model and interface to other
models, it will be much less challenging to make
the models and ensuring integration problems are
avoided.

• The results of the analysis can help in the decision
process of whether to model the entire system in
one domain, or if co-simulation between multiple
domains should be utilized. If, for example, most
of the system ends up in the discrete-event domain,
and only very simple parts of the system end up
in the continuous-time domain, there is no moti-
vation to do a multi-domain co-simulation of the
system. If, on the other hand, the different compo-
nents of the system are distributed evenly across
the two domains, co-simulation will be enabled.

7 Summary
Designing hybrid systems consisting of software, elec-
tronics and mechanical components is a highly com-
plex affair, and existing mono-disciplinary develop-
ment methods cannot be applied directly to these types
of systems. Even though a lot of academic projects has
been carried out in this area of research, few - if any -
has gained acceptance in industry.

The aim of the project ”Development Process for Multi-
Disciplinary Embedded Control Systems” is to describe
a model-driven development methodology, which can
be used as a golden reference when creating system-
level models in multi-disciplinary projects. It is of great
importance that the method fits into existing classic de-
velopment processes, as well as support dialog across
disciplines. The methodology will be tested on case
studies of safety-critical hybrid systems. It is impera-
tive that the developed method can be widely accepted
by engineers with different fields of expertise such as
electronics, mechanics and software.

A comparative survey of four continuous-time model-
ing tools has been initiated, in order to get an overview
of their capabilities. This comparison will help deter-
mine which tools are better suited for which modeling
task, and will in turn help determine which parts of the
complete system should be modeled in which tool. It
will also help in the process of determining whether
a single tool can be used to model the entire system,
or if a co-simulation of several domain specific models



should be used. Future work includes expanding this
survey to include discrete-event tools as well.

Finally, work on the model-driven methodology has
started, initially focusing on dissecting the complete
system in order to designate which parts should be mod-
eled in which domain. The early results of this method
holds great promise, and will act as a solid base upon
which to further develop a complete method for devel-
oping hybrid systems.
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