
DEVELOPING DEEP SIMULATION SYSTEMS TO
STUDY WIRELESS NETWORK PERFORMANCE

Paolo Pileggi1, Giuseppe Iazeolla2 and Pieter Kritzinger3

1Networking Group, University of Roma ‘Tor Vergata’, Italy
2Software Engineering and System Performance Modelling Group,

University of Roma ‘Tor Vergata’, Italy
3Communications Research Group, University of Cape Town, South Africa

psk@cs.uct.ac.za(Pieter Kritzinger)

Abstract

There is an abundance of literature that present simulation studies of wireless networks, includ-
ing IEEE 802.16 or WiMAX. The focus in such papers is invariably on the results and never
on the simulation itself, which is seen merely as a means to determine numerical values. The
reason for this may be that, with very few exceptions, the simulations use one or other well-
known simulation platform. In this paper we argue that, with the complexity of a system such
as WiMAX, one needs to develop a simulator from scratch by implementing the basic simu-
lator components using a programming language, such as Java. This ensures that every detail
of the standard is understood and represented and that all system parameters and their values
are accessible to the modeller. Moreover, the performance metrics one wants to access may
not necessarily be those offered by the simulation platform nor is it always clear whether the
statistical methods follow those that the user has confidence in. This paper does not deal with
the performance of a wireless network per se but instead explains a general simulation method-
ology for determining the QoS and performance management of wireless networks that support
differentiated traffic services.

Keywords: Simulation, Wireless systems, IEEE 802.16, WiMAX, system performance
model, network of queues.

Presenting Author’s Biography
Paolo Pileggi is a PhD student at the University of Rome II ’Tor Vergata’, Italy. He obtained his
Bachelors, Honours and Masters degrees with distinction in Computer Science from the University
of Cape Town, South Africa. Currently, his work focuses on performance of wireless networks,
particularly 4G technology.



1 Introduction
The research literature abounds with work on the per-
formance simulation of wireless systems, including
IEEE 802.11 and IEEE 802.16 [1, 2, 3, 4, 5], all report-
ing on simulations to find various system performance
indices such as throughput, latency times, jitter, etc. In
all these papers, simulation is only seen as a means
to obtaining the numerical predictions. In this paper
we do not present another such model for performance
prediction. The paper is focused, instead, on the pre-
sentation of a general methodology that illustrates the
gradual steps of analysing, specifying and developing a
simulator of a wireless network, using IEEE 802.16 or
WiMAX as a concrete example.

For the sake of conciseness and following the exam-
ple of the authors in [6, 7, 8], we assume the reader
is familiar with the WiMAX standard and with the de-
tails of the physical (PHY) and Medium Access Con-
tention (MAC) layers, in particular the WirelessMAN-
SCTM PHY [9]. We consider a fixed WiMAX network
in a point-to-multipoint (PMP) topology in particular.
Under the PMP topology, Subscriber Stations (SSs) do
not communicate directly with one another but have to
do so via the Base Station (BS). A further detail that is
important to know for what follows is that connections
are granted per SS (GPSS) by the BS, rather than the
alternative of granting requests per-connection. Fig. 1
shows the topology of the system of our application ex-
ample: Local area networks (ENV1, . . . , ENVN ) are
connected via their respective SS to a single BS which
acts as a back haul network relay to other SSs on a wire-
less link or to the Internet (INET) via a fixed-line mo-
dem.

The fixed WiMAX standard specifies four different cat-
egories of traffic (called Traffic Categories, TCs): Un-
solicited Grant Service (UGS), real time Polling Ser-
vice (rtPS), non-real time Polling Service (nrtPS), and
Best Effort (BE). Resource and connection manage-

Fig. 1 The vertically integrated wireless Internet sce-
nario with the IEEE 802.16 back haul network

ment is an important aspect of the IEEE 802.16 back
haul network because it controls the resources between
the ENVs and the Internet. It therefore has a significant

impact on the QoS. The BS manages QoS by sharing re-
sources between the multimedia connections requested
by the users, which originate in the ENVs and the In-
ternet. The network must enforce connection admis-
sion control (CAC) and scheduling protocols to main-
tain acceptable QoS for admitted connections. These
connections carry typical Internet data, such as hyper-
text transfer protocol and Voice over Internet Protocol
data, which subscribe to one of the TCs specified in
the IEEE 802.16 standard. Only once a connection has
been granted service, may it start generating and send-
ing data to its destination. Each datum of a granted con-
nection is associated with the TC that the connection
subscribed to and receives service accordingly.

In what follows, we illustrate a methodology to develop
a discrete-event simulator ensuring that the implemen-
tation follows the detail of the standard, that the vari-
ous parameter values used are known, while obtaining
reliable simulation result in reasonable times with stan-
dard computer equipment. The paper is organised as
follows: Sect. 2 gives an overview of our simulation ap-
proach. Sect. 3 describes the simulated system. Sect. 4,
before the conclusion, gives the details of the simulator
development.

2 Simulation Approach
For a simulation, one can either apply existing plat-
forms, such as the OPNET Modeler [10], ns2 [11],
QualNet [12] or OMNET++[13], or develop one’s own
simulator by implementing the simulation engine in a
language such as Java. The OPNET Modeler Wire-
less Suite, as one instance, provides high fidelity mod-
elling, simulation, and analysis of a broad range of
wireless networks. But these simulators are complex,
general-purpose software suites and it is seldom clear
which details of the network stack are being modelled
or where all the associated parameters may be found.
More controversially, some of these systems are com-
mercial products and, for proprietary reasons or other-
wise, do not make clear [14] whether

• one is assured that the simulation has stabilised be-
fore sampling,

• what the sample sizes are, or

• whether sampling is done to ensure identically, in-
dependently distributed (i.i.d.) variables.

In a controversial paper, Cavin [15] illustrated these
points by showing the deviation in results among
widely-adopted simulators, such as OMNeT++ and
ns2, for a sample mobile ad-hoc network experiment.
Statements such as “ . . . users are responsible for veri-
fying for themselves that their simulations are not inval-
idated because the model implemented in the simulator
is not the model that they were expecting . . . ” [11] are
not very encouraging when one is conducting a scien-
tific study. Nevertheless, these general simulation plat-
forms and libraries are apparently useful as witnessed
by the many published studies that use them.



Some authors, such as Bianchi et al. [1] and the au-
thors [5] prefer to know exactly what is being simulated
and therefore prefer the second option. They

• sacrifice the convenience of these software plat-
forms and, at the same time,

• spend much time delving down into the minute
system detail to ensure that these are represented
by the simulation model.

It is then possible to measure and record exactly those
performance values relevant to the study. In contrast to
the use of general purpose simulation platforms, we call
this deep simulation. Deep simulators make no claim to
be general or to replace the existing general simulation
platforms.

We used the general programming language Java,
whose flexibility, extensive libraries and algorithmic
capabilities supersedes the higher level languages pro-
vided by platforms such as OPNET Modeler, ns2, Qual-
Net or OMNET++.

3 Conceptual System Development
The methodology we are about to describe has two
main stages: We start with a system performance model
(SPM) and from that extract the associated network of
queues (NoQ) model to be implemented as a discrete-
event simulator.

3.1 System Performance Model

The aim of the system performance model (SPM) is to
identify and describe the network structure and man-
agement components chosen to be modelled. The SPM,
shown in Fig. 2, presents a high-level abstraction of the
network application. The abstracted functional frame,
shown in Fig. 3, describes the TDD frame abstraction,
i.e., the Downlink (DL) MAP (DLMAP), Uplink (UL)
MAP (ULMAP), and so on, as described in the stan-
dard [9]. The functional periods, shown in this frame
(which we modelled) are the MAPs, DL profiles, UL
connection contention period and the individual SS UL
profiles. This frame is stripped of all fixed preambles
and the maintenance opportunities periods which we as-
sume to be utilized sparingly.

The network carries bandwidth requests (BWRs) and
data per connection. Data arrive at each individual SS,
where they are queued at the SS connection queues. An
SS transmits data from these queues during its sched-
uled period in the UL subframe to the BS. The BS, in
turn, receives data according to the ULMAP it commu-
nicated at the beginning of the current frame.

Each SS employs its own scheduling algorithm since,
as already mentioned, the network is operating in GPSS
mode. The BS is therefore only responsible for schedul-
ing each SS UL time and each SS must schedule its own
per-connection data transmissions. Data are transmit-
ted from an SS to the BS over the wireless UL-server
(WUL) and from the BS to an SS over the wireless DL-
server (WDL).

The fixed-line input/output physical links (Fin/Fout)
at the BS concurrently accept data arrivals from, and
transmits data to, the Internet (INET), respectively.
Data is transmitted over servers Fin and Fout between
the INET node and the BS at a very high data rate such
that the time taken for data to be transmitted across Fin

and Fout is close enough to zero that one may safely
assume the instantaneous arrival of data over each link.

In the system, BWRs arrive at an SS and are buffered
there until the connection contention period, specified
in the ULMAP, starts. During this period, BWRs are
transmitted to the BS according to a truncated expo-
nential backoff process to help with collision avoidance
and are queued at the BS CAC. In the model, BWR ar-
rivals at the SS are forwarded directly to the BS CAC
waiting-line and no collisions of BWRs are assumed.
Also, all BWRs in the CAC waiting-line are evaluated
at the end of the connection contention period. These
assumptions are made since the detailed collision reso-
lution process does not impact the performance of the
system significantly.

As shown in Fig. 4, at the end of the connection con-
tention period of the current frame Fn, the CAC pro-
cesses BWRs and keeps the granted requests as connec-
tion set SA. The CAC then informs the BS scheduler
of its admission decisions during the current frame Fn.
The BS scheduler does not use this information, i.e.,
set SA, to calculate the new MAPs for the next frame
Fn+1. Rather, the BS first informs the SSs during the
frame Fn+1 of the admitted connections in SA and only
uses the information in the grant request set SA to cal-
culate the MAP for frame Fn+2.

The BS scheduler uses virtual queue information, to-
gether with the scheduling algorithm and QoS parame-
ters, to determine the new ULMAP and DLMAP. These
MAPs are transmitted from the WDL to the SSs at the
beginning of the next frame.

Data per connection arriving at the BS are queued at the
BS MAC memory buffers. The fixed-line output and
wireless UL server (Fout and WUL, respectively) each
have their own associated logical waiting-line struc-
tures where, in the case of Fout, the service time is zero,
as explained before. this server.

3.2 Network of Queues Model

In this section, we develop the network of queues
(NoQ) model our simulator is based on. The model
shows only one TC for ease of explanation. Fig. 5
shows the data sources and abstractions of the Internet
UL and the UL resource sharing between the N SSs.

As shown on the left of Fig. 5, the INET source gen-
erates data, i.e., BWRs and data per connection (data),
served by the fixed-link UL server Fin and, since the
fixed-link UL is high-speed, Fin is assumed to enforce
no delay on data. The data arrive at the BS along the
fixed-link UL interface.

Also, on the left of Fig. 5, it is shown how SS
sources generate data that are queued at the respective
SS’s connection data queues. The wireless UL server



Fig. 2 The systems performance model

Fig. 3 TDD frame simplified by ignoring pre-ambles, periods necessary for antennas to switch between receive
and transmit modes and other management time durations

WUL serves the SS connection queues according to the
ULMAP specified by the BS, where each SS executes
the SS scheduler and serves its internally managed con-
nection queues during the UL period allocated to it.
Each SS transmits data along the wireless UL at a cer-
tain rate (specified in the information elements of the
ULMAP) and data arrive at the BS along the wireless
UL interface.

Data per connection arrive at the BS wireless receiver
from the SS NoQ model, shown to the right of Fig. 5.
Wireless UL data have as their destination either the
fixed-line Internet or another wireless SS. Data units are
therefore either queued at the MAC memory buffers for
wireless SS-designated data or transmitted to the Inter-
net along the Fout fixed-line link. Data arriving from
the Internet at the BS along the Fin fixed-line interface
have as ther destination some wireless SS and are thus
queued at the MAC memory buffers.

The BS transmits data from the MAC memory buffers
along the DL, as shown on the right hand side of Fig. 5.
The BS scheduler is, as shown in the figure, responsible
for generating the MAP information and transmitting it
to the SSs.

BWRs are generated at both the SSs and Internet
sources. As described in Sect. 3.1 and illustrated by
Fig. 4, connections admitted and rejected during the
current frame are first notified of admission or rejection

during the DL of the next frame. Only after this period
will the scheduler include these admitted connections in
the MAP assembly decisions. The assumptions regard-
ing BWR arrivals and evaluation have been described
in Sect. 3.1 and hence we derive the NoQ model ab-
stracting both wireless and fixed-line BWRs at the BS
per TC, as shown at the top of Fig. 5. BWRs originating
at the fixed-line and wireless sources are queued at the
CAC. The processed requests are then forwarded to the
BS scheduler.

Fig. 5 therefore shows the model that represents the en-
tire system to be modelled based on the TDD frame
structures and SPM described above.

3.3 Baseline Model

The baseline model is the system model definition ex-
cluding the resource and connection management com-
ponents and simulation execution parameters. It in-
cludes the PHY layer, workload model, frame aspect ra-
tio and fragmentation parameters. The baseline model
was devised in order to ensure that the experimental
results are that of a plausible system scenario bearing
in mind that the current system is only used as an ex-
ample to illustrate our methodology. As an example,
a PHY layer parameter configuration is given by Ta-
ble 1. Note that the maximum size of PDU fragments
may effect the system performance: The BS allocates
UL transmission time to each SS. However, an SS can



Fig. 4 Request admission-notification process

Fig. 5 Network of queues model model abstracting both wireless and fixed-line data and BWRs at the BS per TC

Parameter Value
Frame duration (Tframe) 1ms
UL wireless modulation rate (MCSUL) 80 Mbps
DL wireless modulation rate (MCSDL) 40 Mbps
Connection contention duration (Tconn) 50µs
DL:UL frame ratio 668:332
Maximum PDU fragment size (Cfrag) 1280 bits

Tab. 1 Physical Layer parameter values selected for the
baseline model

only transmit a PDU if there is sufficient time to trans-
mit the entire PDU. If the SS is allocated time less than
that of the fragment size it will not be able to transmit
that PDU/fragment. If the BS is not able to allocate
enough bandwidth during system operation to an SS,
that SS becomes deadlocked.

We also know that all SSs are scheduled along the UL
during each frame. Furthermore, in our system, all SSs
are treated equally in terms of workload and schedul-
ing process parameter values. Therefore we must deter-
mine the PDU fragment size Cfrag (in bits), such that
0 < Cfrag ≤ CS

UL, where CS
UL is the mean amount of

data that each SS may be able to send per UL frame for
some number S of SSs.

Considering the MAP transmission time TMAP and
connection-contention period Tconn, TUL is given by
Eq. 1. Furthermore (referring to (cf. Table 1), con-
sider the choice of Tconn = 50µs, ωUL = 0.332 and
S = 6 and where TMAP is given by Eq. 2. With
Cfrag = CS

UL, where CS
UL = TUL×MCSUL

S , the cal-

culation shows that one would have to choose Cfrag ≤
3723 bits. The length of a VoIP fragment is 1028 bits
which is what we have chosen for Cfrag .

TUL = ωUL × (Tframe − TMAP )− Tconn (1)

TMAP =
140 + 32× S

MCSDL
(2)

Since the UL scheduler allocates UL transmission pe-
riods based on the current connection status of the sys-
tem, it may be possible that an SS may experience a
period during which it cannot transmit any data. How-
ever, since the connection-level behaviour is dynamic
and SSs are considered the same, the SS will, in time,
recover from this congestion state.

3.4 Execution Parameters

The simulation accepts a set of execution parameter at
the start of an experiment. Table 2 gives an example of
an execution parameter set. For the example parame-
ter values provided in this paper, we separately calcu-
lated that, with a third of the radio frame dedicated to
UL data transmission, the system is fully utilised at a
rate of 4.4 Mbps [16]. We therefore selected a range of
traffic intensities below 4.4 Mbps for our experiments.
From preliminary runs, it was apparent that the initial
transient was over at t = 1000s. We decided to run the
simulations for 6500s because we wanted to obtain as
much performance data as possible given the amount of
available RAM and ROM memory. This provided us
with enough simulation time from which we could ob-
tain performance estimates. The initial seeding value of
the random number generators is arbitrarily chosen and
provided for repeatability of the experiments.



Fig. 6 Basic simulation engine PFC with the process flow blocks of the event routines

Parameter Value
SS arrival rate (minimum) 1.6 Mbps
SS arrival rate (increment) 0.4 Mbps
SS arrival rate (maximum) 3.6 Mbps
Number of SSs 6
Simulation duration 6500s
Tracing starting time 0s
Random number generator seed 11111

Tab. 2 Experiment execution parameter values

4 Simulation Engine Design
The simulation engine is event-driven [14], where an
event represents a discrete change to one or more state
variables at a particular moment in time. The main
components are the scheduler and event routines. The
engine is organised as shown in Fig. 6. An event rou-
tine is invoked by the scheduler at the time that an event
of the associated type occurs. As shown in Figure 6,
11 events are taken into consideration by the engine:
4 events were identified from the abstracted frame, as
annotated in Fig. 7, and are

1. EOULSF: End of UL subframe.

2. NEXTDIUC: Next DL interval usage code, repre-
senting the start of the next DL profile.

3. EODLSF: End of DL subframe.

4. NEXTUIUC: Next UL interval usage code, repre-
senting the start of the next UL profile, including
the UL connection contention period.

Using the NoQ model, previously described in
Sect. 3.2, 5 events were identified, as annotated in
Fig. 8. These are

1. SSARR: SS arrival, representing a PDU arrival at
one of the SSs in the list of SSs.

Fig. 7 TDD frame structure with relevant events anno-
tated

2. FARR: Fixed-line arrival, representing a PDU ar-
rival at the BS from the INET.

3. WARR: Arrival at the BS wireless interface, rep-
resenting the end of service of a PDU along the
UL.

4. EOSWDL: End of service of the wireless DL
server.

5. BWRARR: BWR arrival, representing the arrival
of an SS or Internet BWR at the BS CAC.

Fig. 8 Overall NoQ diagram with relevant events anno-
tated

Finally, 2 events were identified to account for data
sampling (SAMPLE event) and ending the simulator
(ENDSIM event) respectively.

For each event, a detailed process flow chart (PFC) was
produced and eventually translated into the simulation



Fig. 9 Process flow chart for the WARR event

program. As an example, Fig. 9 shows the PFC for the
WARR event: The current in-service PDU, at the SS
that was last to transmit, is taken out of service and re-
moved from the SS buffers. If the PDU’s destination is
the Internet, it is sent to the data sink for data collec-
tion. Otherwise, if it must be forwarded to another SS,
it is put in the BS buffers, i.e., the WDL waiting-lines.
Next, if the transmitting SS’s queues are empty, WARR
is disabled. Otherwise, the next PDU is put into service
at the transmitting SS and WARR is scheduled at time
tSIM + tS , where tSIM is the current time in the sim-
ulator, i.e., the artificial simulation time, and tS is the
time taken to service the particular PDU being served.

As output, trace files are generated during simula-
tion for both connection– and packet-level information.
This allows one to use a sampling technique of one’s
choice, such as repeated runs or batch means meth-
ods [17]. Moreover, for such a complex simulation,
it takes a long time to complete a simulation run and
therefore, by generating trace files, methods to ensure
statistical soundness, such as removing initial biased
samples [14, 18, 17], can be redone without having to
re-execute the entire simulation run.

Full details of the implementation, as opposed to the
principles we have described, are clearly beyond the
scope of this paper. The reader is referred to the MSc
dissertation by Pileggi [16] for detailed documentation
on the simulation engine, event process flows and in-
terface specifications, as well as for detailed test case
reports.

4.1 Testing the Simulator

The simulator was validated through the derivation of
the various abstract models, carefully developed for the
system under study. Our testing verifies that the simu-
lator was built correctly, acknowledging that the simu-

lator state space is simply too large to exhaustively test
every function.

Due to the component nature of the simulator, a mod-
ular testing approach was taken: CAC, schedulers
and workload generator components were tested first.
Thereafter, the simulation engine was tested before the
integration of these components was tested.

Positive testing was done to ensure the simulator com-
ponents affect the system state variables in the way they
should be affected. Negative tests, whereby it is tested
whether the simulator “. . . does not do what it is not
supposed to do”[19], were not conducted. Structural
white-box tests were conducted to ensure that the simu-
lator event process flows were correctly translated from
PFCs into code: Integration testing, was done by in-
specting the program source, i.e. tracing the method-
chains invoked to the point where the required system
state variables are affected.

5 System Capabilities with respect to the
State of the Art

As seen above, the IEEE 802.16 technology and the
vertically integrated wireless Internet scenario are par-
ticularly complex. Additionally, the study requires spe-
cific abstractions to be made. As said in Sect. 1, we
therefore developed a deep simulator. It is generally
accepted that simulation tools make simulation model
development easier, faster and more effective and may
include features such as experimental design, advanced
reporting and exploitation of computer architecture to
improve execution speed. Users of these tools may en-
counter some obstacles while learning to use them at
first. Thereafter, simple simulation models may be de-
veloped fast and efficiently. However, developing simu-
lation models of a more complex nature is a much more



challenging task; it requires users to have an expert un-
derstanding not only of the system but of the tool used
as well.

By the mere fact that such tools need to be general, they
present users with certain limitations, primarily due to
the structure of the simulator in terms of the simulation
paradigm followed and the language(s) used to realise
the model. For simple models these tools are appro-
priate but for more complex ones, they are not. Users
may want to (re-)configure the system to a larger ex-
tent and/or at a lower level, such as making changes to
certain protocols fixed in the assumptions of the tool.

As one example, OMNeT++ is a modular general-
purpose simulation environment with graphical and sta-
tistical components and offers a wide range of software
suites, such as its mobility framework. However, it is
seldom clear which details of the network stack are be-
ing modelled and where the associated parameters may
be found.

For proprietary reasons, commercial products may not
always make clear the particular techniques used for
obtaining statistically significant [17] performance es-
timates. Furthermore, should the modeler require non-
conventional data analysis, as was the case for this
study, or simply inspect the performance data during
data analysis, proprietary tools may not necessarily pro-
vide such functionality.

Most importantly, the accuracy of a simulation model
developed, using a simulation tool, is also question-
able. The study by Cavin et al. [15] we mentioned,
shows how different implementations of the same sim-
ulation model, each developed using a different simu-
lation tool, may result in a significant divergence be-
tween the results obtained from these simulators. This
is partly due to the different levels of detail provided for
implementation and configuration.

Simulation tools may prove very accurate if the
abstraction-level and simulation paradigm supported
suit the system being modelled. Otherwise developing
a deep simulator may prove not only more accurate but
also more useful by allowing the developer a greater de-
gree of flexibility of manipulating the system model and
allow the developer greater insight into the true nature
of the system.

6 Conclusion
It is rare though to find performance study that uses a
simulation, while providing a great deal of other infor-
mation, and would mention much about the simulator.
The reader is simply asked to believe that a simulator
was developed, almost exclusively using existing plat-
forms such as ns2, and that it is correct and the statisti-
cal methods employed are trustworthy.

The objective of this paper was not to disprove the va-
lidity of earlier work, although studies exist which put
a question mark behind the use of simulation libraries,
but rather to present a step-by-step methodology when
a modelling team decides to build their own simulator

from scratch in a process we call deep simulation.

While time consuming, the authors are of the opinion
that knowing exactly what is being represented in the
model, the facility to change the simulation, such as
one needs to do when studying different schedulers and
Connection Admission Control algorithms, and know-
ing the correctness of the underlying statistical methods
employed, far outweigh the additional effort involved.

Acknowledgements
This work has been kindly supported by

• the University of Rome ‘Tor Vergata’/CNIT
(Italy),

• the FIRB projects on Software frameworks and
technologies for distributed simulation and Perfor-
mance evaluation of complex systems, by the Uni-
versity of Rome ‘Tor Vergata’ research on Perfor-
mance modeling of service-oriented architectures
and the CERTIA Research Center (Italy), and

• THRIP, TELKOM, Siemens-Nokia, Telesciences
(South Africa).

7 References
[1] Giuseppe Bianchi. Performance Analysis of the

IEEE 802.11 Distributed Coordination Function.
IEEE Journal on Selected Areas in Communica-
tions, 18(3):535–547, March 2000.

[2] Chen-Nee Chuah. A Scalable Framework for IP-
Network Resource Provisioning Through Aggre-
gation and Hierarchical Control. PhD thesis, Uni-
versity of California at Berkeley, 2001.

[3] David Erman, Dragos Ilie, and Adrian Popescu.
BitTorrent Session Characteristics and Models.
In Proceedings of the Third International Work-
ing Conference on Performance Modelling and
Evaluation of Heterogeneous Networks (HET-
NETs’05), Ilkley, United Kingdom, 2005.

[4] Jiongkuan Hou, Jie Yang, and Symeon Papavas-
siliou. Integration of Pricing with Call Admis-
sion Control to Meet QoS Requirements in Cel-
lular Networks. IEEE Transactions on Paral-
lel and Distributed Systems, PDS-13(9):898–910,
Sep 2002.

[5] Giuseppe Iazeolla, Pieter S Kritzinger, and
Paolo P Pileggi. Modelling Quality of Service
in IEEE 802.16 Networks. In Software, Telecom-
munications and Computer Networks, 2008. Soft-
COM 2008. 16th International Conference on,
pages 130–134, 2008.

[6] Jianfeng Chen, Wenhua Jiao, and Hongxi Wang.
A service flow management strategy for IEEE
802.16 broadband wireless access systems in
TDD mode. In IEEE International Conference on
Communications, pages 3422–3426, 2005.

[7] Hyoung-Kee Choi and John O Limb. A Be-
havioral Model of Web Traffic. In ICNP ’99:
Proceedings of the Seventh Annual International



Conference on Network Protocols, page 327,
Washington, DC, USA, 1999. IEEE Computer So-
ciety.

[8] I C Msadaa, F Kamoun, and F Filali. An Adap-
tive QoS Architecture for IEEE 802.16 Broadband
Wireless Networks. In Mobile Adhoc and Sensor
Systems (MASS 2007). IEEE Internatonal Confer-
ence on, pages 1–3, 2007.

[9] IEEE. IEEE Standard for Local and Metropolitan
Area Networks. IEEE 802.16 Standard, 2004.

[10] O T Incorporated. OPNET Modeler.
http://www.opnet.com.

[11] NS-2. The Network Simulator - NS-2.
http://www.isi.edu/nsnam/ns.

[12] S N Technologies. Introducing the VisNet Net-
work Planning Software. http://www.scalable-
networks.com.

[13] OMNET++. A discrete event simulation system.
http://www.omnetpp.org.

[14] Jerry Banks, John S Carson, Barry L Nelson, and
David M Nicol. Discrete-Event System Simula-
tion. Prentice-Hall, Third edition, 2000.

[15] David Cavin, Yoav Sasson, and André Schiper.
On the accuracy of MANET simulators. In POMC
’02: Proceedings of the second ACM interna-
tional workshop on Principles of mobile comput-
ing, pages 38–43, New York, NY, USA, 2002.
ACM.

[16] Paolo Pileggi. Cross-layer RaCM Design for Ver-
tically Integrated Wireless Networks. Master’s
thesis, University of Cape Town, December 2009.

[17] Averill M Law and David W Kelton. Simulation
Modeling and Analysis. McGraw-Hill, 2000.

[18] Hisashi Kobayashi and Brian L Mark. System
Modeling and Analysis. Prentice Hall, New Jer-
sey, 07458, 2009.

[19] John Watkins. Testing IT - An Off-the-Shelf
Software Testing Process. Cambridge University
Press, 2001.


