
HETEROGENEOUS MODEL INTEGRATION AND
VIRTUAL EXPERIMENTATION USING XMOD:

APPLICATION TO HYBRID POWERTRAIN DESIGN
AND VALIDATION

Mongi Ben Gaid, Gilles Corde, Alexandre Chasse, Bruno Léty, Rodolphe De La Rubia,
Mohamed Ould Abdellahi

Technology, Computer Science and Applied Mathematics Division, IFP, FRANCE

mongi.ben-gaid@ifp.fr(Mongi Ben Gaid)

Abstract

The design, development and validation of vehicle powertrains is performed in
concurrent cycles, involving various teams, working on a wide range of fields,
and relying on modeling and simulation. However, there are still limitations that
reduce models exchange and exploitation. After reviewing the main limitations of
current simulation tools and methodologies, this paper introduces a new software
platform, code named xMOD, and ambitioning to improve models exchange and
exploitation. The main idea of xMOD is to combine in the same platform, a
heterogeneous model integration environment, as well as a virtual instrumentation
and experimentation laboratory. xMOD allows model developers, on one hand,
to make their models easily understandable and exploitable, thanks to its virtual
instrumentation functionalities, and to protect any confidential know-how. On the
other hand, xMOD makes it possible for engineers and scientists, regardless of
their experience and proficiency in a given modeling language or environment,
to rapidly and easily integrate and exploit heterogeneous models. xMOD enables
an increase of simulation speed due to its ability to exploit multi-core processors.
Finally, the application of xMOD to the design and validation of a hybrid vehicle
is presented, illustrating its functionalities and demonstrating its effectiveness.

Keywords: Model integration, virtual prototyping, virtual experimentation, co-simulation

Presenting Author’s Biography
Mongi Ben Gaid received the Dipl-Ing. degree in electrical engineering
from the National School of Engineers of Tunis, Tunisia, in 2002, the M.S.
degree in distributed computing from the University of Paris XI, Orsay,
France, in 2003, and the Ph.D. degree in control and computer engineering
from the University of Evry Val d’Essonne, France, in 2006. He is cur-
rently with the Technology, Computer Science and Applied Mathematics
Division of Institut Français du Pétrole (IFP). His research interests include
real-time and multi-domain simulation, control and process monitoring.



1 Introduction
Modeling and simulation technology is widely used
within the automotive industry, where it has proven,
in many projects, that it allows reducing the time-to-
market. The support of simulation in the automotive
design process is essential to fulfill costumers’ needs
or to comply with the new regulations. It provides the
ability to predict the behavior and consequences of de-
sign choices, to access non measurable quantities or to
perform test procedures which could be expensive or
hazardous in real experimentations.

Modeling and simulation is a very wide area, which is
used by different engineering fields at different stages
of the product life-cycle. It encompasses various mod-
eling formalisms [1] (ordinary differential equations
(ODE), differential algebraic equations (DAE), partial
differential equations (PDE), state charts, Petri nets...),
abstraction levels (component level, system level) or
physics fields (hydraulics, thermodynamics, mechan-
ics, electronics, control, computer science...). This di-
versity naturally leads to the emergence of various mod-
eling languages and tools.

The most precise models of the involved physical phe-
nomena are generally given by 3D partial differen-
tial equations (Navier-Stokes, Maxwell, heat and wave
equations for example). This precise modeling might be
needed at specific design stages of some vehicle com-
ponents. For example, designing new engines imple-
menting innovative combustion concepts requires the
study of the turbulent combustion and the chemical ki-
netics within the combustion chamber, with timescales
in the order of the turbulent timescale [2, 3]. With
this fine modeling, simulating one second might re-
quire several minutes or even hours on high perfor-
mance computers.

In opposition to this fine granularity simulation, sys-
tem simulation focuses on a higher-level view of the
vehicle. It allows the study of a global performance,
such as fuel consumption or road handling. It is also
needed in the design, development and validation of
control strategies [2]. The system simulation of a vehi-
cle may be mainly characterized by the abstraction level
(system level), the modeling formalisms (ODE, DAE,
state charts...). However, it requires a multi physics
approach, at different timescales. Simulation times on
standard desktop computers may range from the real-
time to some tens times the real-time.

The design, validation and performance assessment of
new vehicle concepts, such as hybrid vehicles, are in-
creasingly relying on system simulation. New simu-
lation models (batteries, electric motors...) have to be
included in order to allow the hybrid powertrain simu-
lation. However, the exchange, reuse and exploitation
of models are still limited. Boosting model exchange
requires fulfilling expressed and non expressed needs
of both model suppliers and model users. For model
suppliers, the main needs are, on one hand, the ability
to easily protect the confidential know-how contained
in the model, and on the other hand, the ability to ex-

pose the model at the right abstraction level. But model
users need the ability to quickly use the received models
with a reasonable cost and effort. This requires the abil-
ity to understand the models without having to explore
all their programming details and without having to be
proficient in their modeling languages or development
environments. In both situations, simulation speed per-
formance is the key for testing more concepts in less
time. The exploitation of multi-core processors for sys-
tem simulation, which is currently lacking in major sys-
tem simulation environments, is the major potential for
such performance speedup.

This paper focuses on these new requirements. It intro-
duces the xMOD platform, which have been developed
at IFP. It illustrates the way xMOD addresses these re-
quirements, its contributions to current design process,
its simulation speed performance and presents its appli-
cation to a typical use case characterizing the increase
of complexity and the multi-domain interaction: the hy-
brid vehicle.

This paper is organized as follows. First, an overview
of current modeling and simulation tools and method-
ologies limitations, within the automotive industry, is
presented. Then, the xMOD platform concepts and
contributions are presented. Finally, the application of
xMOD to a hybrid powertrain design and validation is
described.

2 Model exchange and exploitation barri-
ers

Building a system model is usually performed through
the assembly of its components’ models. A hybrid ve-
hicle is a typical example of a complex system. Its de-
sign, development and validation is performed in con-
current cycles, involving various teams, working on a
wide range of fields including mechanics, thermody-
namics, hydraulics, power electronics, heat transfer, vi-
brations, control... During these cycles, specific model-
ing and simulation tools might be preferred by these dif-
ferent teams, for example, AMESim or GT-POWER for
engine modeling, Matlab/Simulink for control design,
ASCET for control implementation, Dymola for vehi-
cle dynamics, Comsol for Batteries modeling... Model
development is an iterative process. Starting from a first
version, models are progressively improved, refined,
calibrated and validated. For those reasons, within one
big entity, different models are available, at different ab-
straction levels and precision. However, the integration
and exploitation of these models is still limited, mainly
due to model exchange obstacles, and the lack of dedi-
cated tools allowing model exploitation, and which sep-
arates model building from model exploitation.

2.1 Model exchange obstacles

In current model-based design processes, various obsta-
cles limit the possibilities of model exchange. Among
these obstacles, we may cite:

• The difficulty to integrate and exploit heteroge-
neous models without having to explore their pro-



gramming details and without having to be profi-
cient in their modeling languages or development
environments.

• Model exchange between different entities (for ex-
ample, an OEM and a tier 1 supplier) requires
the protection of the confidential know-how con-
tained in the exchanged models. A current prac-
tice within the automotive industry is to exchange
controllers or models as Matlab/Simulink mexw32
s-functions. Although this means allows to protect
model equations, it does not allow to efficiently
personalize the model interface (for example, se-
lecting the variables or signals that may be moni-
tored), nor to numerically integrate the s-functions
with different solvers.

• Bridges (i.e. co simulation interfaces) between the
different modeling and simulation tools do not al-
ways exist. Some existing bridges have inherent
limitations, which reduce the co-simulation per-
formance and possibilities [4].

• The lack of collaborative tools, ensuring the col-
laborative development and exchange of models
during the whole development cycle.

2.2 Model exploitation handicaps

Moreover, there is a lack of tools allowing the effi-
cient exploitation of models through off-line simula-
tion. In fact, modeling and simulation environments are
mainly targeted to models building. However, test, ex-
perimentation and validation tools, such as dSPACE’
ControlDesk or National Instruments’ LabVIEW pro-
vide virtual instrumentation facilities allowing simple,
efficient and intuitive interaction with physical equip-
ment. Virtual instruments like gauges, buttons, poten-
tiometers, bar graphs or graphs allow the construction
of user specified dashboards to interact and to monitor
a physical system. However, this virtual instrumenta-
tion is mainly targeted to be interfaced with a specific
hardware, and to be executed with hard real-time timing
requirements. We believe that using this virtual instru-
mentation to interact with a simulated model, without
having these hardware and real-time constraints, would
provide an efficient way for model exploitation. In fact,
virtual dashboards allow abstracting the modeling lan-
guage in which a model has been construed. They may
be customized in order to only display the features that
a model user, in other department, division or company
needs (abstraction capabilities).

2.3 Reference platform requirements

Based on these ideas, a set of requirements defining an
ideal model exchange, integration and virtual prototyp-
ing platform have been formalized. This platform has
to fulfill the following requirements:

• Facilitate the exchange of models between the dif-
ferent engineering teams.

• The exchange has to be based on a domain specific
language (a minimal and simple language that cap-

tures the essential characteristics of all used mod-
eling and simulation environments).

• Improve simulation speed by enabling the effi-
cient exploitation of multi-core processors, and al-
lowing the application of a different step-size and
solver, to the each integrated model (depending on
its stiffness).

• Be compatible with modeling and simulation stan-
dards.

• Be simple and user-friendly (intuitive).

These needs were the motivation behind the develop-
ment of xMOD. In the following, the main concepts of
xMOD are overviewed, and the way this platform ad-
dresses the aforementioned needs is illustrated.

3 The xMOD platform
3.1 Main concept

The xMOD concept relies on separating the phases of
model building and model exploitation of the model
lifecycle. It focuses on the latter phase. The main idea
of xMOD is to combine, within the same platform:

• A heterogeneous model integration environment

• A virtual experimentation laboratory

xMOD aims to use the concept of “the gray to black”
box as a main basis for model exchange. The ex-
changed models are instrumented using virtual instru-
ments dashboards, allowing to abstract their modeling
language. Figure 1 illustrates the concept of instru-
mented heterogeneous model representing the model
exchange format that xMOD aims to promote.

Fig. 1 Instrumented heterogeneous model in xMOD,
representing the basis for model exchange



xMOD does not intend to replace the original modeling
and simulation tools, but aims at promoting their coex-
istence. In fact, models lifecycle may be decomposed in
two parts : model construction and model exploitation.
xMOD targets to address this second phase of model
exploitation.

3.2 Model import in xMOD

This feature is achieved by the xMOD Target, which
provides a set of mechanisms allowing to convert a
model to a unified representation which is independent
from its original modeling environment. In xMOD,
models are seen as gray boxes, whose “darkness” is
customizable by the model owner. In this representa-
tion, models are characterized by inputs, outputs, pa-
rameters and signals.

Fig. 2 Gray box vs. black box model

The xMOD target relies on Matlab Real-Time Work-
shop code generator. Exported parameters and signals
may be selected by the model developer, prior to ex-
porting its model to xMOD. This allows the model de-
veloper to protect its know-how. It may chose to hide
all the parameters and signals of its model, and to ex-
port it as a black box. Other information (version, step-
size...) is included in the model interface description
xml file. Is worth mentioning that xMOD import format
is open (and may be characterized by a xml document
describing model interface and parameters values, and a
C-code API). For that reason, users are also able to cre-
ate own targets for their own simulation tools, which
are not currently covered by xMOD.

3.3 xMOD contributions

The different case-studies that have been undertaken
with xMOD show that the xMOD concept provides sig-
nificant improvement to the current model-based de-
sign methodologies. It allows fulfilling expressed and
non expressed needs of both model suppliers and model
users. xMOD contributions may be summarized in the
following points:

• Heterogeneous model integration: xMOD pro-
vides a heterogeneous model integration environ-
ment for models built by different persons using
different languages and tools and working within
different entities. Currently, xMOD allows the in-
tegration of Matlab/Simulink, LMS Imagine.Lab
AMESim and Dymola models.

• Virtual experimentation features: xMOD al-
lows creating virtual dashboards, containing vir-
tual instruments, which may are linked to the dif-
ferent parameters or signals of the model that have

to be displayed (and that the model designer al-
lowed to make accessible). xMOD allows also to
create automated virtual test benches using differ-
ent scripting languages. These features enable val-
idating the system model which was built through
the integration of different components, dimen-
sioning components (design parameters optimiza-
tion using simulation), pre-calibrating control al-
gorithms parameters or running robustness tests.

• Simulation speed: xMOD runs binary models
compiled from their associated C code, activat-
ing the code full optimization during compila-
tion. For that reason, execution times are sev-
eral times faster than those obtained while sim-
ulating interpreted modeling languages. xMOD
associates an execution thread to each integrated
model. Mechanisms for guaranteeing the synchro-
nization between the different threads were imple-
mented. This allows xMOD to execute models
embedding different solvers at different step-times
on multi-core and multiprocessor architectures.

• Standalone execution : xMOD offers an integra-
tion, co-simulation and virtual prototyping plat-
form, which is able to run models without any
need to the existing modeling and simulation tools.
xMOD allows the integration and exploitation of
models without requiring the installation, on the
same computer or network, of the original mod-
eling tools (Simulink, AMESim or Dymola) that
have been used to produce these models (in op-
position to other collaborative co-simulation envi-
ronments, which are based on tools coupling, and
which ensures the co-simulation by running the
models on their original simulation environments
and exchanging data using DDE or DCOM pro-
tocols). Imported models embed all the needed
data: no data files are referred to. This signifi-
cantly eases model exchange and increases simu-
lation performance.

• Congregates the benefits of each tool: xMOD
allows to exploit the forces of each modeling and
simulation tool (modeling language or environ-
ment suitability with an engineering field, solvers
efficiency, language expressivity, modeler profi-
ciency, existence of adapted libraries...).

• Co-simulation benefits: In comparison to a
global simulation of a complete system using a
single solver, a co-simulation where the system
is conveniently decomposed, for example to iso-
late stiff parts, provides a more efficient execution
and better simulation times [5]. In fact, isolating
stiff components of the system model avoids con-
straining the whole model with their solving re-
quirements. Non-stiff parts may be integrated with
lighter solvers, and with greater step-sizes.

• Confidentiality management and know-how
protection: xMOD executes models in binary
form. When a model is converted to xMOD import
format, two files are generated: a model interface



description xml file (whose content is customiz-
able) and a dynamic link library, which is com-
piled directly from C code. This provides a gener-
ally acceptable level of model details protection.
The xMOD target allows specifying exactly the
signals and the parameters that have be included
in the model interface and made accessible during
model exploitation and co-simulation.

• Life-cycle continuity: Dashboards, model de-
scription format and automation scripts used in
xMOD are compatible with HIL and test bench au-
tomation software in use in IFP (Morphee 2 from
D2T). Thanks to this compatibility, the model-
in-the loop validation performed with xMOD al-
lows to prepare and to significantly reduce the time
of the subsequent phases (which are more expan-
sive).

4 A case study: Hybrid powertrain design
and validation

xMOD has been used in the cooperative research
project HyHIL, which involved IFP, D2T, LMS Imag-
ine, G2Elab and Renault. This project focused on
hardware-in-the-loop (HIL) applications to hybrid pow-
ertrains design and assessment. The main goal of this
study was the evaluation of hybrid propulsion concepts
and the benefits of different degrees of hybridization in
a flexible architecture, by using a chain of simulation
platforms: from the co-simulation to the high-dynamics
engine-in-the-loop test bed, through a virtual version of
the latter. In this project, xMOD has been used for the
development and validation of the engine and vehicle
simulation models, the associated controllers and the
energy management supervisor (EMS).

4.1 Description of the analyzed parallel hybrid ar-
chitecture

The parallel hybrid architecture analyzed in this case
study is depicted in Figure 3. The engine is a gaso-

Fig. 3 The parallel hybrid architecture

line turbocharged engine. The pre-transmission elec-
tric machine is a starter-generator (SSG), which is
only allowed to start the engine, without any boost-
ing or regenerating capabilities. In contrast, the post-

transmission electric machine (MOT) allows for power
assist, including purely electric drive, and battery
recharge, including regenerative braking. The transmis-
sion ratio between the electric machine and the wheels
is constant, while the gearbox is an automated manual
transmission.

4.2 Overview of hybrid vehicle models and con-
trollers

After choosing the parameters of each vehicle com-
ponent and computing the performance potentials, the
next development stage of a hybrid vehicle is the con-
trol design. This phase generally relies on a simulator
that integrates vehicle and powertrain models with the
different controllers and supervisors. For an accurate
design and validation of the controllers, it is necessary
to use dynamic models.

Fig. 4 Co-simulation architecture describing the in-
volved models

Figure 4 illustrates the architecture of the hybrid vehi-
cle simulator. The simulator includes the EMS detailed
in [6]. The EMS and the low-level controllers were
written in Matlab/Simulink. The controllers have been
coupled with models aimed at representing the system
dynamics in a much more accurate way than the simple
models used to design and derive the optimization laws.
The simulator is made of the following sub-models:

• A high-frequency zero-dimensional spark-ignition
engine simulator developed in AMESim. It repre-
sents the main physical phenomena with a tempo-
ral resolution in the order of one crank angle. Such
a precision is necessary to represent the impact, on
the system, of the engine transient maneuvers, in-
cluding start-ups. This model has an order of 115.
Its maximum step-size is 100 µs (with any fixed-
step solver).

• A high-frequency transmission model of order 14
(dual-mass flywheel, clutch and gearbox) devel-
oped in AMESim. The model stiffness required
using a fourth-order Runge-Kutta solver.

• A battery model written in Simulink. In the pre-
sented version of this case study, an equivalent-
circuit model of the battery was included. How-



ever, in the subsequent versions, electrochemical
models of the battery will be used [7]. The xMOD
integration facilities allows easily replacing the
equivalent-circuit battery model with the electro-
chemical one.

• The cycle manager, allowing to apply a selected
standardized cycle.

• The driver model, which simulates a human driver
that tries to follow the specified cycle.

• The global controller, written in Simulink, and
which includes the vehicle energy management
system (EMS), the engine controller and low-level
controllers (such as transmission controller). The
EMS distributes the driver torque request taking
into account optimization considerations. The en-
gine and motor controllers try to apply the torque
request from the EMS to the physical components.
The EMS and the other controllers have specific
execution rates (1 ms for the EMS, 1 ms for the
transmission controller, whereas the engine con-
troller is asynchronous and driven on TDC (Top
Dead Center)). The different involved sub-rates
are handled using Simulink Triggering functional-
ities. Since interrupts are not available on a pure
simulation environment on desktop PC, the global
controller is executed as a discrete-time system,
with a base period of 100 µs (in order to allow
a precise emulation of the TDC and crank angle-
based sensors).

4.3 Integration and validation using xMOD

Building the full hybrid vehicle simulator requires in-
tegrating these Simulink and AMESim models. This
integration was performed using the xMOD integra-
tion functionalities. A screen shot of the hybrid vehi-
cle simulator integration in xMOD is given in Figure 5.
Based on this integration project, an xMOD simulation

Fig. 5 Integration project of the hybrid vehicle in
xMOD

project was constructed. It allows to link the differ-
ent quantities (inputs, outputs, parameters and signals)
of the hybrid vehicle model integration to virtual dash-
boards, as shown in Figure 6. These virtual dashboards

were constructed based on a predefined instruments li-
brary, containing the most commonly used virtual in-
struments (such as graphs, gauges, buttons, bar-graphs,
potentiometers and bitmap containers). Furthermore,
xMOD allows the user to write scripts allowing to ani-
mate these virtual dashboards.

Fig. 6 Simulation project of the hybrid vehicle in
xMOD

This xMOD simulation project was then used to vali-
date the EMS and the low-level controllers on different
driving tests (tip-in, tip-out, driving cycle) and to as-
sess the behavior of the physical components models.
It allowed to visualize in a simple and intuitive way the
different choices of the EMS (starting or stopping the
spark-ignition engine, starting and stopping the electric
motor, charging the batteries...) during the driving cy-
cle, and to observe their impact on fuel consumption.

Figure 7 shows a simulation dashboard under execu-
tion in xMOD, where the hybrid vehicle components
(engine, electric motor, battery) are highlighted when
active. In the particular screen shot of Figure 7, the
electric motor is highlighted, which indicates that it is
delivering the torque (whereas the spark-ignition engine
is stopped).

4.4 Comparison between Simulink, xMOD in
terms of simulation CPU time

Two integration setups of the simulator were tested and
compared. First, the Simulink and AMESim models
were integrated in Simulink (where the AMESim mod-
els were imported as s-functions). The integration of
the hybrid vehicle models and controllers in Simulink
imposes to apply the same time-step and the same
solver to all the continuous-time models, especially the
involved physical models. A fourth-order Runge-Kutta
solver with a step-time of 100 µs was selected in the
Simulink integration.

In contrast, in xMOD integration project, each model
may be imported with its specific solver and time-step.
Each model is executed in a separate thread and may
be potentially dispatched on a different processor core.
For that reason, the AMESim vehicle model that was
imported in xMOD was generated with a fourth-order
Runge-Kutta solver and a solver step-time of 500 µs,



Fig. 7 Simulation execution in xMOD: EMS operation, torques and energies visualization

whereas the spark-ignition engine model was generated
with a first-order Euler solver and a solver step-time of
100 µs. Cycle manager, driver and global control (in-
cluding the EMS and all the low-level controllers) mod-
els are executed as discrete-time blocks (with no em-
bedded solver) at the respective sample times of 10ms,
10 ms and 100 µs. This co-simulation scheme led to
a significant improvement of the simulation speed with
respect to the Simulink-based integration, as shown in
Table 1. This Table summarizes the CPU time needed
to simulate, on a standard laptop PC with an Intel Core
2 Duo Processor at 2.40 GHz, the 1180 seconds of a
NEDC cycle with both xMOD and Matlab/Simulink
R2007b (which does not support yet multi-core simu-
lation). Simulation results show that xMOD allowed to
speedup the simulations with a factor of 6. This illus-
trates simulation performance potentials of xMOD (op-
timized C code execution and multithreaded execution
on multi-core processors).

Tab. 1 Comparison of simulation CPU time (in sec) ob-
tained with Simulink and xMOD

Conventional
Vehicle

Stop &
Start Hybrid

Simulink 7920 8025 9110
xMOD 1272 1284 1372

Speedup 6.2 6.2 6.6

4.5 Comparison between Simulink, xMOD and ex-
perimental results in terms of fuel consump-
tion

Finally, the simulation results obtained with xMOD
were compared to the Simulink simulator and to the
experimental engine-in-the-loop test bench (where the
engine is real but the vehicle is simulated in real-time).
Table 2 compares the conventional engine-driven op-
eration, the same operation with a stop-and-start ca-
pability suppressing the idle consumption, and the hy-
brid operation with the EMS (all under the NEDC drive
cycle). The benefit in fuel consumption reduction us-
ing the hybrid capability and its energy management
is clearly observed, particularly in urban driving con-
ditions. Table 2 summaries also the fuel consump-
tion results obtained using the Simulink simulator, the
xMOD simulator and on the experimental test bench.
The xMOD simulator results were closest to the exper-
imental results. This is due to the multithreaded model
execution semantics of xMOD, which are similar to the
real-time model execution semantics of the test bench.

Tab. 2 Comparison of the different fuel consumptions
(in [l/100km]) obtained with Simulink, xMOD and ex-
perimentally

Conventional
Vehicle

Stop &
Start Hybrid

Simulink 7.01 6.46 4.20
xMOD 7.25 6.69 4.42

Test bench 7.20 6.70 4.64



5 Conclusion
This paper introduced the new model integration and
virtual experimentation xMOD platform, aiming at
simplifying model exchange and exploitation. After re-
viewing the main motivations behind the development
of xMOD, it described the main concepts and contri-
butions of this software platform. The application of
xMOD to the design and validation of a hybrid vehi-
cle was then presented, allowing an easy visualization,
interaction and understanding of simulation results, and
an increased simulation performance with respect to the
usual integration platform.

6 References
[1] P. J. Mosterman and H. Vangheluwe. Computer

automated multi-paradigm modeling: an introduc-
tion. Simulation, 80(9):433–450, 2004.

[2] A. Albrecht, O. Grondin, F. Le Berr, and G. Le Sol-
liec. Towards a stronger simulation support for
engine control design: a methodological point
of view. Oil & Gas Science and Technology,
62(4):437–456, 2007.

[3] O. Colin, A. Pires da Cruz, and S. Jay. Detailed
chemistry based auto-ignition model including low
temperature phenomena applied to 3d engine calcu-
lations. In Proc. 30th International Symp. on Com-
bustion, Pittsburgh, pages 2649–2656, 2005.

[4] E. A. Lee and H. Zheng. Leveraging synchronous
language principles for heterogeneous modeling
and design of embedded systems. In Proc. Inter-
national Conf. on Embedded Software, Salzburg,
Austria, 2007.

[5] J. Larsson, P. Krus, and J-O. Palmberg. Power
Transmission and Motion Control, chapter Meth-
ods for Organising Co-simulation Among Several
Participants. Professional Engineering Publishing
Limited, London and Bury St Edmunds, UK, 1999.

[6] A. Chasse, Gh. Hafidi, Ph. Pognant-Gros, and
A. Sciarretta. Supervisory control of hybrid power-
trains: an experimental benchmark of offline op-
timization and online energy management. In
Proc. 2009 IFAC Workshop on Engine and Pow-
ertrain Control, Simulation and Modeling, Rueil-
Malmaison, 2009.

[7] V. Sauvant-Moynot, E. Prada, J. Bernard, J. Mar-
tin, A. Sciarretta, N. Rajapakse, Y. Touzani, J.-C.
Dabadie, and F. Badin. An integrated approach to
high power modeling: from the electrochemistry to
the vehicle. In Proc. International Battery, Hybrid
and Fuel Cell Electric Vehicle Symp. & Exhibition,
Norway, 2009.


