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Abstract

In this paper the adoption of a novel high accuracy numericalintegration method is
presented for a practical mechanical engineering application. It is based on the di-
rect use of the Taylor series. The main idea behind it is a dynamic automatic order
setting, i.e. using as many Taylor series terms for computing as needed to achieve
the required accuracy. Previous results have already proved that this numerical
solver is both very accurate and fast. In this paper the performance is validated for
a real engineering assembly. The chosen experiment setup isa multi-torsional os-
cillator chain which reproduces typical dynamic behavior of industrial mechanical
engineering problems. Its rotatory dynamics are describedby linear differential
equations. For the test series the system is operated in a closed-loop configuration.
An analytic solution of the linear differential equations of the closed-loop system
for the output variable is obtained with the mathematical software tool Maple and
validated by comparison to measurements at the experiment.The performance of
the Modern Taylor Series Method is demonstrated by comparing its results to sim-
ulation results from conventional fixed-step numerical integration methods from
the software tool Matlab/Simulink. Furthermore, the improvement in numerical
accuracy as well as stability is illustrated.
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1 Introduction

In many modern applications in industry simulation has
become a powerful tool for engineers in order to pre-
dict real system behavior or validate closed loop con-
troller performance without conducting cost-intensive
test cycles on appropriate test facilities. Often the spe-
cific problem setup requires the application of real-time
algorithms running on external hardware units, as for
example hardware-in-the-loop systems on automotive
test stands. Simulation speed as well as stability of the
performing algorithms are critical in such applications.

Today’s most common mathematical simulation soft-
ware packages (e.g. Matlab/Simulink) provide vari-
ous types of numerical integration methods [1]. These
methods differ primarily in the way the solution at the
next time step is calculated, knowing the time derivative
at the current time step. Variable-step solvers are able
to adapt the interval step size dynamically during sim-
ulation, depending on the current rate of change of the
solution. Fixed-step solvers which are used in real-time
systems have a defined fixed step size because they need
to calculate the simulation output deterministically for
each time step. Increasing the step size, fixed-step algo-
rithms typically become unstable at a certain step size
limit. More information about numerical methods and
stability can be found in [2]. Finding a numerical inte-
gration method which is accurate, fast and also robust
regarding stability, would therefore increase the quality
of such real-time algorithms drastically.

A very promising approach for such problems is the
Modern Taylor Series Method (MTSM) [3] - a special
parallel system which has been developed at the Brno
University of Technology. This parallel system can be
used in a special hardware unit for the acceleration of
numerical integration. The main component of the par-
allel system is a numerical integrator carrying out nu-
merical integration based on the Taylor series. A de-
scription of this system can be found in [4].

The Institute of Mechanics and Mechatronics at the Vi-
enna University of Technology deals with modern con-
trol engineering methods for different types of indus-
trial applications. In order to compare the performance
of the MTSM to other fixed-step solvers a laboratory
experiment model of a multi-torsional oscillator has
been chosen. This system represents a typical example
for such applications as it serves as analogous model for
drive train components of internal combustion engines.
It can be modeled by linear ordinary differential equa-
tions using theoretical modeling techniques and can be
simulated on common numerical simulation tools, e.g.
Matlab/Simulink. Measurement results for all relevant
variables can be gathered without high technical ef-
fort. Furthermore, the closed-loop control of this sys-
tem demonstrates a characteristic use case within auto-
matic control applications.

The paper is structured as follows: Section 2 contains
a detailed description of the MTSM. Section 3 is de-
voted to the experimental setup which is used for the
validation of the analytical solution obtained by Maple

and contains the derivation of the differential equations
from a mathematical modeling. Section 4 illustrates the
application of the MTSM to the differential equations
as well as the controller structure and Section 5 pro-
vides tests and comparisons of the presented numerical
integration methods.

2 Modern Taylor Series Method

The Taylor series method is one of the earliest analytic-
numeric algorithms for the approximate solution of ini-
tial value problems for ordinary differential equations.
Even though this method is not much preferred in liter-
ature, experimental calculations have shown and the-
oretical analyses have verified that the accuracy and
stability of the Taylor series method exceeds the cur-
rently used algorithms for numerically solving differ-
ential equations.

The numerical solution of an ordinary differential equa-
tion (1)

ẏ = f(t, y), y(t0) = y0 (1)

is written as the sequence (2)

[y(t0) = y0], [y(t1) = y1], · · · [y(tn) = yn].
(2)

The best-known and most accurate method of calculat-
ing a new value of a numerical solution of a differential
equation is to construct the Taylor series in the form (3).

yn+1 = yn + h·f(tn, yn) +
h2

2!
·f [1](tn, yn) + · · ·

+
hp

p!
·f [p−1](tn, yn) (3)

whereh is the integration step.

The main idea behind the MTSM is an automatic inte-
gration method order setting, i.e. using as many Taylor
series terms for computing as needed to achieve the re-
quired accuracy. The MTSM used in the computations
increases the method order automatically, i.e. the val-
ues of the terms (4) are computed for increasing integer
values ofp until adding the next term does not improve
the accuracy of the solution (last three terms of Taylor
series are equal to zero).

hp

p!
·f [p−1](tn, yn) (4)

The main problem connected with using the Taylor se-
ries (in the form of (3)) is the need to generate higher
derivativesf [1], f [2], · · · . If it is possible, however, to
obtain the terms with higher derivatives, the accuracy
of calculations by the Taylor series method is extreme
(it is in fact only limited by the type of the arithmetic
unit used). A drawback of this method is thatf(t, y)
has to belong to a special class. Fortunately, this class
is large enough to contain the functions that appear in
many applications. This is typical, in particular, of the
solution of technical initial problems.



2.1 Technical Initial Problems

Technical initial problems are defined as initial prob-
lems where the right-hand side functions of the system
are those occurring in technical practice, that is func-
tions generated by adding, multiplying and superposing
elementary functions. Such systems can be expanded
into systems with polynomials on the right-hand sides
of the equations. In such a case the Taylor series terms
can be easily calculated.

To demonstrate this, Eq. (5) is analyzed.

ẏ = a·y· cos t y(0) = y0 (5)

A simple computation scheme based on equation (1)
follows

f(t, y) = a·y· cos t (6)

Let v = cos t then

f(t, y) = a·y·v

f [1](t, y) = a(f(t, y)·v + y·v̇)

f [2](t, y) = a(f [1](t, y)·v + 2·f(t, y)·v̇ + y·v̈)

...

f [p−1](t, y) = a·(

p−2
∑

i=0

f [p−2−i](t, y)·v[i]

(

p − 1

i

)

+

+y·v[p−1]) (p ≥ 2) (7)

where

v̇ = − sin t

u = sin t

v[p] = −u[p−2] (p ≥ 2)

u[p−1] = v[p−2] (p ≥ 2) (8)

Similar constructions can be created for all elementary
functions, such asexp, sin, cos, tan, coth, ln, sinh, . . . .
The right-hand side of equations that belong to the tech-
nical initial problems can be decomposed in a sequence
of simple operations: addition, subtraction, multiplica-
tion, division and combination of them. These rules can
be applied recursively so that recursive formulas for the
derivatives of a function described by combinations of
these elementary functions can be obtained.

More detailed information about the MTSM can be
found in [3]. The MTSM has been implemented in
TKSL software [5], which is used for simulation results
in this paper.

Some articles that are focused on the MTSM were pub-
lished last year. Paper [6] describes a new modern nu-
merical method based on the Taylor series method and
shows how to evaluate the high accuracy and speed of
the corresponding computations. Article [7] deals with
the simulation system TKSL that has been created for
the numerical solution of first order differential equa-
tions using the MTSM.

There are several papers that focus on computer imple-
mentations of the Taylor series method in different con-
text - a variable order andvariable stepformulation of
the Taylor method for the numerical solution of ODEs
(see, for instance, [8]). Another more detailed descrip-
tion of a variable step size version of the Taylor series
can be seen in [9]. This paper describes a software im-
plementation of the method as well. The stability do-
main for several Taylor methods is presented in [10].

3 Application
3.1 Experimental setup

Fig. 1 shows the assembly of the experiment which
is used for the validation of the presented integration
method. It consists of two torsional oscillator mod-
ules (blue casings) which are driven by a separate servo
drive unit (black casing).

The system is operated from a Windows PC via a
Quanser UPM 1503 power module and Q4 control
hardware using Quanser’s WinCon control software
package for Simulink. For further information on
Quanser components and software tools please see [11].

Fig. 1 Multi-torsion chain

3.2 Modeling

The system’s dynamical behavior is modeled using a
mathematical-physical approach consisting of the elec-
trical and mechanical subsystems.

Servo drive
The servo drive is illustrated in Fig. 2. The goal is to
model the torqueT , subject to the terminal voltageU
and the speeḋφ1.

U

Rm
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Jm

φ̇1

J

T

Fig. 2 Servo drive of the multi-torsion chain

Using Kirchhoff’s laws and the law of conservation of
angular momentum, one obtains the relation



J1φ̈1 = kgKm

U − Kmkgφ̇1

Rm

− T (9)

between the speeḋφ1, the terminal voltageU and the
drive torqueT , with kg being the gear transmission ra-
tio, Km the gyrator constant of the motor andJ1 =
Jmk2

g +J the combined moment of inertia of the motor
and the gear transmission.

Multi-torsion chain
The two torsional modules each consist of an oscillator
and a rubber cuff which serves as connection to the next
module, respectively to the servo drive. Fig. 3 shows
the two torsional modules schematically. The mass mo-
ments of inertia of the two oscillators are denominated
J2 andJ3, the torsional stiffnesses of the rubber cuffs
ks1 andks2, and the torsional damping resistancesλ1

andλ2. Using the law of conservation of angular mo-

φ1, φ̇1

J2 J3

T

ks1, λ1 ks2, λ2

φ2, φ̇2 φ3, φ̇3

Fig. 3 Torsional modules

mentum for the two torsional modules as well as rela-
tion (9), one obtains

φ̈1 =
1

J1
[ks1(φ2 − φ1) + λ1(φ̇2 − φ̇1) +

+U
Kmkg

Rm

− φ̇1

K2
mk2

g

Rm

] (10)

φ̈2 =
ks1

J2
[φ1 − φ2] +

ks2

J2
[φ3 − φ2] +

+
λ1

J2
[φ̇1 − φ̇2] +

λ2

J2
[φ̇3 − φ̇2] (11)

φ̈3 =
ks2

J3
[φ2 − φ3] +

λ2

J3
[φ̇2 − φ̇3]. (12)

4 Modern Taylor Series Method Applica-
tion

If the MTSM is used for the solution of differential
equations it is necessary to transform the system of
higher order differential equations to an equivalent sys-
tem of first order differential equations. This methodol-
ogy can be seen in literature [12]. The transformation
(reduction of order) of Eqs. (10), (11), (12) yields:

φ̇1 = a (13)

φ̇2 = b (14)

φ̇3 = c (15)

ȧ =
1

J1
[ks1(φ2 − φ1) + λ1(b − a) −

−
K2

mk2
g

Rm

a] −
Kmkg

J1Rm

[k1φ1 + k2φ2 +

+k3φ3 + k4a + k5b +

+k6c − Kww] (16)

ḃ =
ks1

J2
[φ1 − φ2] +

ks2

J2
[φ3 − φ2] +

λ1

J2
[a − b] +

λ2

J2
[c − b]. (17)

ċ =
ks2

J3
[φ2 − φ3] +

λ2

J3
[b − c]. (18)

Note that theki and Kw in Eq. (16) are the con-
troller parameters of the closed-loop setup given in Sec-
tion 5.1. Therefore, Eqs. (13) - (18) already character-
ize the closed-loop dynamics.

5 Setup for Comparison
The goal of this paper is to compare results from the
MTSM and conventional numerical integration meth-
ods from Matlab/Simulink. The variable which is used
for comparison is the angleφ3 of the torsional chain
(see Fig. 3). For this purpose an analytical solution for
a rectangular input signalU (see Section 5.2) is ob-
tained by the mathematical software tool Maple. This
solution is validated by comparison to measurements of
the real system described in Section 3. The validation is
conducted in Section 5.2. The analytical solution from
Maple is used for the comparison of the simulation re-
sults from the MTSM and Matlab solvers. The compu-
tation error is calculated as difference between the an-
alytical solution from Maple and the numerical results
from the MTSM and Matlab solvers, respectively.

5.1 Controller

The system is controlled in closed-loop by a state vector
feedback controller whose parameters are computed by
pole placement. The general structure of such a closed-
loop control system with the reference inputw and the
outputy is depicted in Fig. 5.1.

For more information about control design see
[13],[14].

5.2 Real system measurements

Fig. 5 shows the measurement of the output of the real
system (φ3 in Eq. (12)) and the analytical result from
Maple (denotedy∗) to a rectangular reference input sig-
nal w with the amplitude of5 deg and a frequency of
0.5 Hz (blue line). This reference input signal was cho-
sen because it contains high-gradient level changes and
is well-suited for the comparison of performance of nu-
merical computation tools. The sampling time for the
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measurement on the real system was0.001 s and for the
analytical solution in Maple it was0.005 s. In Fig. 5
the magenta line is the measured signal from the real
system (ym) and the green one is the analytical output
signal from Maple (y∗). The reference input signalw is
drawn in black.
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Fig. 5 Results from measurement and analytical solu-
tion

From these results it can be seen that the output calcu-
lated by Maple approximates the measured output from
the real system very well. It is therefore used for the
comparison of the numerical integration methods.

5.3 Simulation Results

The results of the fixed-step solvers from Mat-
lab/Simulink (ODE1 - Euler, ODE3 - Bogacki-
Shampine, ODE4 - Runge-Kutta, see [1]) and the
MTSM (denoted by ODE6) are compared to each other
in this Section. The analytical solution from Maple is
used for this comparison. The simulation time step is
chosen as0.005s.

A linear Simulink model that represents the real system
behavior is shown in Fig. 6. The plant model consists
of the state space system with the inputu (voltage) and
the outputy (angleφ3). The system is controlled by a
state vector feedback controller with the feedback gain
vectorkT and the pre-filterKw. The reference inputw
for this test series is a rectangular signal with frequency
0.5 Hz and amplitude5 deg.

K*u

x -> phi3

k'* u

state-feedback

-K-

rad->deg phi3

-K-

deg->rad

Kw
x' = Ax+Bu

y = Cx+Du

Torsion-chainSignal

Generator

u x

y

Fig. 6 Simulink model

The analytical solutiony∗ from Maple and the simula-
tion resultsysim from Matlab/Simulink (ODE1, ODE3,
ODE4) and the MTSM (ODE6) respectively are shown
in Fig. 7.
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Fig. 7 Simulation results

5.4 Comparison of Results

The computation error has been calculated as the differ-
ence

e = y∗ − ysim (19)

between the analytical solution from Mapley∗ and
the numerical results from Matlab/Simulink fixed-step
solvers ODE1, ODE3 and ODE4, and the MTSM, re-
spectively. These errors are shown in Fig. 8.
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Fig. 8 Error between analytical and numerical solutions

ODE1 produces the relatively largest error, as can be
seen in the plot. ODE4 delivers more accuracy, but the
error is still comparatively high. Obviously, ODE6 and
ODE3 produce the best results. Therefore, Fig. 9 sep-
arately shows the absolute errors for ODE3 and ODE6
compared to each other. Especially in the regions of in-
put signal steps the ODE6 solution yields considerably
better results than ODE3.

Additionally, in Fig. 10 the difference between the ana-
lytical solution and ODE6 is shown.
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Fig. 9 Error between analytical and numerical solutions
for ODE3 and ODE6 solvers
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Fig. 10 Error between analytical and numerical solution
for ODE6 solver

Tab. 1 and Tab. 2 show the mean absolute error

ēabs =
1

n

n
∑

i=0

|y∗

i − ysim,i| (20)

and the mean relative error

ērel =
1

n

n
∑

i=0

|y∗

i − ysim,i|

y∗

i

(21)

between the analytical solution from Maple and
each solver ODE1-ODE6 for different frequencies
(0.25 Hz, 0.5 Hz, 0.75 Hz and1.0 Hz) of the rectan-
gular input signalw, with n the number of time steps.
The results from the table confirm the results that are
shown in Fig. 8 and 9.

5.5 Stability comparison

The quality of results of simulations using one of the
mentioned numerical fixed-step integration methods
from Matlab/Simulink is depending on the step size. If

Tab. 1 Absolute error of numerical methods for differ-
ent frequencies of input signalw

f Solver error - absolute
[Hz] ODE1 ODE3 ODE4 ODE6

0.25 0.0239 8.6097e-5 0.0033 3.4532e-6

0.5 0.0431 0.0067 1.5218e-43.3982e-6

0.75 0.0713 0.0056 0.0117 3.3137e-6

1 0.0910 3.1738e-4 0.0150 3.2607e-6

Tab. 2 Relative error in percent of numerical methods
for different frequencies of input signalw

f Solver error - relative
[Hz] ODE1 ODE3 ODE4 ODE6

0.25 1.91 0.12 0.41 1.5787e-4

0.5 3.12 0.12 0.81 1.5916e-4

0.75 4.12 0.63 1.19 1.6093e-4

1 6.15 0.14 1.8 1.6241e-4

the step size is increased the results will show unsta-
ble behavior once a critical step size has been reached.
For the ODE3 solver in the presented application this
step size was found to lie betweenh = 0.020 s and
h = 0.025 s. Fig. 11 shows the results of the ODE3 and
ODE6 solvers for a step size ofh = 0.023 s. Significant
indication of unstable behavior for the ODE3 solver can
clearly be determined by the oscillations around the cor-
ners of the input signal. For further information on nu-
merical stability please see [15].
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Fig. 11 Stability test of numerical solution

Using the MTSM, no significant qualitative decline in
the performance can be determined for increasing step
sizes. It is possible to achieve high accuracy and stabil-
ity, even if the step size increases, because the MTSM
changes the order of the method (ORD) automatically
- for increasing step sizes the method order increases
as well. Another advantage of this method is that for



nearly stationary input signals where the gradients are
small, it does not include higher orders of Taylor series
terms. For high frequency input signals with large gra-
dients, the MTSM calculates all higher order terms it
needs for sufficient accuracy. This behavior is shown in
a screenshot of TKSL in Fig. 12. The violet line rep-
resents results of simulation using the MTSM and the
blue line shows the corresponding order of the method
(ORD). As can be seen, in areas around the corners
of the input signal the MTSM uses higher orders for
achieving a stable and accurate solution.

time(s)
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s
im

(d
e
g
),

O
R

D
(−

)

Fig. 12 The value of ORD changes during the compu-
tation (blue line)

6 Conclusion
In this paper the application of a novel numerical in-
tegration method to a real experimental setup was pre-
sented. The main advantage of this method is the dy-
namical adaption of the number of Taylor series terms
during simulation. Before evaluating the performance
of the method, measurement results were obtained on
the real experiment. An analytical solution for a spe-
cific input was generated using the mathemetical soft-
ware package Maple and validated with the measure-
ments. The MTSM was then compared to the analytical
solution and existing fixed-step numerical integration
methods from Matlab/Simulink. The results showed
that the performance of the new method achieved the
most accurate results and also proved a significantly
higher robustness concerning increased step sizes com-
pared to conventional numerical integration methods.

When regarding the online computational effort com-
pared to other fixed-step numerical solvers, the MTSM
has essential advantages: For nearly stationary in-
put signals where the gradients are small, it does not
include higher orders of Taylor series terms and is
therefore computationally very efficient. For high fre-
quency inupt signals with large gradients, it calculates
all higher order terms it needs for sufficient accuracy.
This fact enables it to be very fast and also accurate.
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