
SIMULATION FOR MULTIPROCESSOR
REAL-TIME SCHEDULING EVALUATION

Richard Urunuela, Anne-Marie Déplanche, Yvon Trinquet

IRCCyN, UMR CNRS 6597
University of Nantes

1 rue de la Noë, BP 92101, 44321 Nantes cedex 3, France

{richard.urunuela—anne-marie.deplanche—yvon.trinquet}@irccyn.ec-nantes.fr()

Abstract

The increasing complexity of the hardware multiprocessor architectures as well
as of the real-time applications they support makes very difficult even impossi-
ble to apply the theoretical real-time multiprocessor scheduling results currently
available. Thus, so as to be able to evaluate and compare real-time multipro-
cessor scheduling strategies on their schedulability performance as well as en-
ergy efficiency, we have preferred a simulation approach andare developing an
open and flexible multiprocessor scheduling simulation andevaluation platform
called STORM (”Simulation TOol for Real-time Multiprocessor scheduling”).
This paper presents the simulator on which STORM relies and that is able to
simulate accurately the behaviour of those (hardware and software) elements that
act upon the performances of such systems. An example is given to illustrate such
a performance evaluation.This work has been supported by the french Agence
Nationale de la Recherche through the PHERMA project (Contract ANR ANR-
06-ARFU06-003). See http://pherma.irccyn.ec-nantes.fr.

Keywords: Real-time systems, Multiprocessor global scheduling, Simulation

Presenting Author’s Biography

Urunuela Richard is a research engineer of the IRCCyN laboratory in the
”Real-Time Systems” group. Since 2003 he is interested in the design of
real-time systems and more particularly: operating systems, power man-
agement for such systems, and real-time scheduling. At present, he is in
charge of the implementation of STORM, a Simulation TOol forReal time
Multiprocessor scheduling. He is also focusing on the development of en-
gineering tools for helping to the design of power management policies.
Previously he worked around scheduling and power management in the
OBASCO research group at the Ecole des Mines of Nantes.



1 Introduction
Multiprocessor architectures are becoming more and
more attractive. From single-core designs with heat
and thermal problems, chip makers are now shifting to
multicore technologies. While making them decreas-
ingly expensive, they are making very powerful plat-
forms available. Such platforms are desirable for em-
bedded system applications with high computational
workloads such as robot controls, image processing, or
streaming audio. The additional characteristic of such
applications is to meet some real-time constraints; con-
sequently they require predictable performance guaran-
tees from the underlying operating system. This has led
to renewed interest in multiprocessor real-time schedul-
ing: scheduling algorithms together with schedulability
analysis. So many theoretical results are available but
mainly based on simple hardware and software archi-
tecture models [1].

These results are difficult to exploit if the assump-
tions are not satisfied which is the case for modern
hardware and software architectures (processor hetero-
geneity, cache management, inter-processor commu-
nications, complex software behaviours, system over-
heads, etc.). Furthermore, due to the specific applica-
tion fields where energy efficiency is critical (battery-
based embedded systems), power management tech-
niques (Dynamic Voltage and Frequency Scaling or Dy-
namic Power Management) are inescapable and must
be taken into account.

Indeed, in such a context, it is very difficult to evalu-
ate and compare scheduling algorithms on their schedu-
lability performance as well as energy efficiency. So
we think that a more global approach is needed in or-
der to explore the adequacy between scheduling poli-
cies and (hardware and software) architectures. It is
not for us a matter of implementing scheduling algo-
rithms on true multiprocessor platform(s) but rather of
designing an open and flexible framework able to sim-
ulate accurately the behaviour of those (hardware and
software) elements that act upon the performances of
such systems. The tool we are working on is called
STORM which stands for ”Simulation TOol for Real-
time Multiprocessor scheduling” [2]. This multipro-
cessor scheduling simulation and evaluation platform
is intended to: i) use as input the specifications of the
hardware and software architectures together with the
scheduling policy; ii) simulate the system behaviour
using all the characteristics (task execution time, pro-
cessor functioning conditions, etc.) in order to ob-
tain the chronological track of all the ”events” that oc-
curred at run-time; iii) compute various real-time met-
rics in order to analyse the system behaviour and per-
formances from various point of views. For the time
being, engineering efforts on STORM have concerned
mainly its simulator component since it is the retain-
ing element of the platform. For a given ”problem”
i.e. a software application that has to run on a (multi-
processor) hardware architecture, this simulator is able
to ”play its execution” over a specified time interval
while taking into account the requirements of tasks, the
characteristics and functioning conditions of hardware

components and the scheduling rules. The original
need to develop STORM came from the works of the
PHERMA research project (PHERMA - ”Parallel Het-
erogeneous Energy efficient Real-time Multiprocessor
Architecture” - is an ANR (French National Research
Agency) project (see http://pherma.irccyn.ec-nantes.fr).
This project addresses multiprocessor architectures for
which one needs to evaluate the performances in term
of energy efficiency for specific hardware and software
architectures.

2 Motivation of our work
In comparison with the impressive number of publica-
tions and results on real-time scheduling since more
than 30 years, few tools are available to apply them.
On the one hand, some commercial tools exist for
the complete design and analysis of real-time systems.
Obviously they are not freely available, as examples:
RapidRMATM (from Tri-Pacific Software Inc.) or
TimeWiz (from TimeSys Corp.) On the other hand,
open source or free products are available coming from
the academic community. Some of them are the re-
sult of PhD studies that do not overstep the prototype
state without maintenance support. As an example we
can cite [3] or XRMA [4]. Others are more substantial
but do not offer enough flexibility so as to be extended
or adapted for new requirements. Some examples
are: YASA (”Yet Another Scheduling Analyser”) [5],
MAST (”Modeling and Analysis Suite for real-Time
applications”) [6, 7], Cheddar [8, 9], or TORSCHE
[10, 11]. That is why we decided to implement a new
tool with the following main design specifications:

• it addresses specifically multiprocessor architec-
tures (composed of homogeneous or heteroge-
neous processors); monoprocessor architectures
being the simplest case;

• it has to be able to take into account: i) the fea-
tures of hardware architecture: multicore design,
multiprocessor architecture with shared memory,
distributed architecture with communication net-
work, memory architecture (L1 and L2 caches,
banked memory); ii) the features concerning en-
ergy consumption for the processors and memo-
ries, in particular the capabilities for DPM (Dy-
namic Power Management) and DVFS (Dynamic
Voltage and Frequency Scaling);

• it is a free, flexible, portable and open tool: i)
”free” because the STORM software is freeware
under Creative Commons License (subsequently it
will be available as an open source); ii) ”flexible”
means the possibility to program and to add easily
simulation entities (such as scheduling policies)
through well-defined APIs; iii) ”portable” means
the possibility to run it on various OS thanks to the
Java programming language; iiii) ”open” means
that the input/output data are formatted using xml;

• lastly, it is intended to provide a simulation lan-
guage to drive experiments (statistical studies or



domain explorations) via a simulation controller.
Upstream from the simulator, this controller com-
putes the inputs, runs the simulations, and down-
stream computes the required metrics from simu-
lation results.

Fig. 1 The STORM simulator.

3 The STORM simulator
As shown by Figure 1, the STORM simulator needs
the specification of the studied ”problem” as input. By
problem, we means a software real-time application,
i.e. a set of tasks with execution requirements, that has
to run on a multiprocessor hardware architecture. It is
described in a XML input file in which specific tags
and attributes have to be used, and where references
to predefined components (available in attached Java
class libraries) are made. Thus, for such a given prob-
lem, the simulator is able to ”play its execution” over a
specified time interval while taking into account the re-
quirements of tasks, the characteristics and functioning
conditions of hardware components and the scheduling
rules, and with the highest timing faithfulness. As a
result, a lot of simulation outputs can be computed: ei-
ther user readable in the form of diagrams or reports,
or machine readable intended for a subsequent analysis
tool. The user’s interactions with STORM go through a
user-friendly graphical interface which is composed of
command and display windows. The figures given after
in the Example section are screen-shots of this GUI.

We want to point out that the simulation is a discrete
time one, i.e. the overall simulation interval is cut into a
sequence of unitary slots [0,1], [1,2],..., [t,t+1], etc.,and
simulation moves forward at each instant 0, 1, ...t, t+1,
etc. Thus, at t, the next simulation state (for instant t+1)
is computed from the current one (of instant t) and the
pending simulation events at time t. Moreover only the
control behaviour of the software application elements
is captured by the simulation. It means that no applica-
tive programs run for the tasks, nor true data exchanges
between tasks exist, but only task execution times and
synchronizations are taken into account while simulat-
ing.

In this paper, we chose to overview the internal ar-
chitecture of the simulator and to present an example
so as to illustrate the kind of performance evaluation

that can be conducted using STORM. Together with the
STORM software (release 3.0), examples and (user and
designer) guides about STORM are freely available at
http://storm.rts-software.org.

3.1 The functional architecture

The internal architecture of the STORM simulator is
composed of a set of entities built around a simulation
kernel (see Figure 2).

Software (respectively hardware) entities stand for the
tasks and data (respectively processors) that compose
the software (respectively hardware) architecture for
which the simulation is conducted. There are as many
task, data link and processor entities as specified in the
XML input file, and they are automatically instantiated
from the library components. Those libraries provide
a large panel of task behaviours: recurrent, periodic or
aperiodic, with or without activation recording, with or
without deadline abort. It’s also the case for the data
links that enable quite complex synchronization rela-
tions between tasks. For the time, two processor types
are available: a basic one and another with functioning
modes and DVFS capabilities.

The system entities represent some run-time and oper-
ating components that are present in real-time multi-
processor platforms.They are the task list manager, the
scheduler and the memory manager. The task man-
ager manages task activations and synchronizations in
accordance with the specifications of the software ar-
chitecture. Thus, at each simulation slot, depending
on the current state, it may interact with the simula-
tion kernel so as to release or block some task(s). The
scheduler entity is in charge of allocating the proces-
sor(s) to the ready tasks depending on the scheduling
strategy it implements. Its type is specified in the XML
input file and can be chosen among the numerous real-
time global event-driven and time-driven multiproces-
sor scheduling algorithms that are available in library.
Moreover, thanks to the flexibility of STORM, there is
no limitation for introducing new scheduling policies as
it will be shown in the final paper. Up to now, the mem-
ory manager has not be developed. Its part should be
to carry out the behaviour of the elements of the physi-
cal memory architecture (memory access bus, memory
bank) that may impact the execution with timing and
energy aspects.

The simulation kernel is at the heart of STORM and has
been thought as simplest as possible. In consequence,
it provides a very few basic services. Due to the dis-
crete approach for the simulation process, one of them
is a time service so as to manage simulation time and to
indicate the spending of time to the simulation entities.
Another kernel service is a watchdog service. It enables
any entity to ask the kernel to arm a watchdog mecha-
nism so that the specified function of the specified en-
tity will be called when the specified delay expires, as
illustrated on Figure 3. Lastly, the kernel offers a ker-
nel message service. For some state change or simula-
tion event occurrence, an entity has to inform the kernel
by asking it to register a pre-identified kernel message.



Fig. 2 The simulator architecture.

The kernel is then in charge of processing such a mes-
sage. Depending of the context, it may lead it to send or
not some other information to some other entities. For
example (see Figure 4), each time one job of the (peri-
odic) task T1 completes, its STORM entity informs the
kernel about its completion (thanks to the well iden-
tified BLOCK message). Obviously such an indication
has to be known to the scheduler entity. Moreover since
task T1 produces some data, the kernel has to inform as
well the data link entity.

Fig. 3 The watchdog service.

In summary, the kernel acts as a ”conductor”: at each
slot, it processes all the pending kernel messages the
simulation has produced up to now and in accordance
with the rules it implements, it switches them towards
the appropriate simulation entities. Of course those in-
teractions between entities that do not require the con-
trol of the kernel are allowed to take place in a direct
way.

3.2 The software architecture

The STORM simulator is written in Java programming
language which makes it independent of any execution
platform. Figure 5 gives a simplified view of the current
UML class diagram of STORM

In accordance with Figure 5, we can find there, on
the one side, theSimulationKernel final class that
implements the kernel of the simulator, and on the
other side, a set of classes (Task, Data, Processor,
Scheduler, TaskListManager, etc.) and their sub-
classes that model the various simulation entities (some
of them correspond to the value that has to be given to
the className attributes in the input xml file).

All of the subclasses inherit from the superclass

Fig. 4 The kernel message service.

Entity. It contains the declaration of the methods in-
volved in the implementation of the different services.
Depending on the subclasses and the behaviour they
must exhibit, those methods may need to be overrided.
If the paper is accepted this part can be extended or not
depending on the reviewers’s remarks.

Fig. 5 The UML class diagram.

4 Example

In this section we show the use of STORM for the
in-depth analysis of a problem. The problem is com-
plex enough because it is about finding the solution that
gives the best result (best throughput and best QoS)
while consuming the minimum of energy. The exam-
ple is inspired of a more complex problem: an H264
decoder (image coding / decoding).

4.1 The problem

The experiment we have conducted is concerned with
the software architecture described in the XML input
file and depicted in Figure 6 (this task graph has been
gotten from the Graphical User Interface of STORM).
It is composed of 8 tasks (referenced ”Task A” to ”Task
H”) and 10 data links (shown as top-down transitions
between tasks). It is a data-flow graph with precedence
constraints. The periodic task ”Task A” generates peri-
odically (every 20ms) some data on which subsequently
the tasks ”Task B” to ”Task E” work in parallel. Their
outputs (by pair) are required as inputs for the execu-
tion of the tasks ”Task F” and ”Task G”. Finally, from
the joined outputs of these two previous tasks, ”Task



H” computes some transformation so as to produce the
result in the end. This last task is a periodic task be-
cause one can thus associate it a deadline that will serve
for the measure of QoS (count of missed deadlines).
Some parameters of the tasks are given in the Table
1. The tasks ”Task A” and ”Task H” are periodic (20
ms) and for the experimentations they will be succes-
sively of type ”PTaskWAM” (With Activation Mem-
ory) or type ”PTaskNAM” (No Activation Memory).
The other tasks are recurrent ones (type ”RTask”). The
chosen rule for computing the actual execution time of
task jobs (specified in the XML input file too) is an uni-
form random law between the BCET and WCET values
for all the tasks. The scheduling algorithm is of type
”FP P Scheduler” (Fixed Priority full Preemptive) and
all the tasks have the same static priority. All the pro-
cessors are identical and of type ”CT11MPCore”.

Our intent is to evaluate what is the minimum required
number of processors of a multiprocessor architecture
so as to maximise the output flow (i.e. the number of
”Task H”’s outputs relatively to the number of ”Task
A”’s activations), while minimising its jitter (i.e. the
variation on the dates where ”Task H”’s outputs are pro-
duced) together with minimising the electrical power
consumption. Such a software architecture as well
as our performance evaluation objective are complex
enough to prefer a simulation study rather than a (nec-
essary) approximate theoretical one.

Tab. 1 Task parameters

Name task BCET (ms) WCET (ms) Task type
Task A 1 3 PTask...
Task B 2 4 RTask
Task C 2 4 RTask
Task D 2 6 RTask
Task E 2 6 RTask
Task F 2 3 RTask
Task G 2 3 RTask
Task H 4 6 PTask...

Fig. 6 The task graph of the software architecture.

4.2 The experiment and results

So as to determine the minimum number of processors,
simulations have been successively conducted with an
increasing value from 1 up to 5 processors (the perfor-
mance metrics do not change beyond 4 processors). So

as to conduct a statistical evaluation, 100 simulations
(with a total duration equal to 1 second for each) have
been achieved. During these simulations all the peri-
odic tasks were of ”PTaskWAM type”. Then another
set of 100 simulations have been conducted, all the pe-
riodic tasks being of ”PTaskNAM type”. In order to
have a measure for the QoS (number of missed dead-
line of ”Task H” ) the deadline of this task has been
fixed to 25 ms, so 5 ms after its period. The measure for
the throughput is the number of executions of ”Task H”
during the simulation duration: so the maximum value
is 50. Table 2 presents the resulting metrics. The values
are computed as normalized mean values for the simu-
lation duration.

Tab. 2 Metric evaluation of the problem

Periodic Number Power Missed Number
task of (W) deadline of
type processors executions
WAM 1 1 45 27.6
NAM 1 1 39 25
WAM 2 1.6 23 49.5
NAM 2 1.6 0.6 49
WAM 3 1.8 5.3 49.8
NAM 3 1.8 0.4 49
WAM 4 2 0 50
NAM 4 2 0 50
WAM 5 2 0 50
NAM 5 2 0 50

From the analysis of the results of the Table 2 the fol-
lowing conclusions can be stated:

1. whatever the type of task the best results (through-
put and QoS) are gotten from 4 processors but the
power is then maximal;

2. using the ”PTaskWAM” task type, one gets more
missed deadlines, therefore the QoS is less good
but the throughput is better, from 2 processors;

3. with the configuration using ”PTaskNAM” task
type and 2 processors, one consumes 25% less
than with 4 processors; the throughput is only 2%
lower than the maximal throughput; the QoS is
good. This solution seems to be a good compro-
mise.

If necessary it is possible to look finely at the be-
haviour of the tasks using a Gantt diagram. As an exam-
ple the Figure 7 (such diagrams are accessible through
STORM’s GUI) gotten with ”PTaskNAM” task type
and 2 processors shows the deadline failure of task H
during the first period. This missed deadline occurs be-
cause it is not possible to have a high degree of paral-
lelism during this period.



Fig. 7 An example of missed deadline with
”PTaskNAM” task type

5 Conclusion

The intent of our work is in the end to evaluate and com-
pare schedulability performance and energy efficiency
of scheduling algorithms and to investigate their ade-
quacy with regard to the hardware and software archi-
tecture features of the considered systems. Presently,
the STORM simulator is able to simulate accurately the
execution of a set of tasks over a multiprocessor system.
Tasks may exhibit various behaviors and be indepen-
dent or not. Various scheduling strategies are supported
too. As a result, the simulator is not only able to state
about the schedulability of the studied system but also
to characterize its behavior with some measurements
for further analysis. At the present time, our work on
STORM is concerned with:

• The energy and power aspects: i) we are ex-
panding the hardware component library with pro-
cessors supporting DVFS and DPM; ii) we are
studying how to introduce banked memory pat-
terns; iii) we are integrating the corresponding en-
ergy/power management strategies as new system
entities;

• The memory architecture modelling: since mem-
ory time access can act significantly upon the
global performances of a multiprocessor system,
we are investigating how to model the behaviour
of (different levels of) cache and external mem-
ory and in particular the overhead induced by their
management;

• The evaluation process automation: we are defin-
ing a simulation language to drive the experiments.
Thus the user would be able to describe a ”do-
main” for the simulation inputs and to specify the
metrics to be measured as a result. Then the tool
would automatically build a statistically represen-
tative set of compliant test cases, run their simula-
tions, and output the statistical results.

6 References
[1] J.Y-T Leung. Handbook of schedul-

ing:Algorithms, Models, and Performance
Analysis. Chapman & Hall/CRC, New York,
2004.

[2] STORM, May 2009. http://storm.rts-
software.org/.

[3] J. Goossens and Ch. Hernalsteen. A tool for sta-
tistical analysis of hard real-time scheduling al-
gorithms. In31st Annual Simulation Symposium
, Boston (USA), IEEE Computer Society Press,
pages 58–65, April 1998.

[4] William Henderson, David Kendall, and Adrian
Robson. Improving the accuracy of scheduling
analysis applied to distributed systems. InJour-
nal of Real-Time Systems no

1, volume 20, pages
5–25, January 2001.

[5] YASA, May 2009. http://yasa.e-technik.uni-
rostock.de/.

[6] MAST, May 2009. http://mast.unican.es/.
[7] M. Gonzlez Harbour, J. J. Gutirrez Garca, J. C. Pa-

lencia Gutirrez, and J. M. Drake Moyano. MAST:
Modeling and analysis suite for real time appli-
cations. In13th Euromicro Conference on Real-
Time Systems (ECRTS), pages 125–134, Delft
(Netherlands), 2001.

[8] F. Singhoff, J. Legrand, L. Nana, and L. Marcé.
Cheddar: a flexible real time scheduling frame-
work. In ACM SIGADA Ada Letters, volume 24,
pages 1–8, December 2004.

[9] CHEDDAR, May 2009. http://beru.univ-
brest.fr/ singhoff/cheddar/.

[10] P. Šůcha, M. Kutil, M. Sojka, and Z. Hanzálek.
Torsche scheduling toolbox for matlab. InIEEE
Computer Aided Control Systems Design Sym-
posium (CACSD’06), pages 1181–1186, Munich,
Germany, October 2006.

[11] TORSCHE, May 2009.
http://rtime.felk.cvut.cz/scheduling-toolbox/.


