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Abstract

A Magneto-Rheologial (MR) damper exhibits a hysteretic and non-linear behav-
ior. This behavior makes it a challenge to develop a model forthis system. The
present research is centered on proposing and analyzing twodifferent fuzzy mod-
els of anMR damper based on experimental data. The first model uses an Adap-
tive Neuro-Fuzzy Inference System (ANFIS) and the second combines fuzzy
methods with semi-phenomenological models. The results showed that fuzzy
modelling can be a powerful framework to capture the behavior of highly non-
linear systems. Among the various input patterns analized,stepped electric current
signals allowed a better training of theANFIS model. Both proposed structures
obtained Error to Signal Ratio (ESR) values of less than 0.1 for the majority of
the experiments. This intensive experimental study confirmed previous theoretic
work done forMR damper model fitting.

Keywords: MR Damper, Modelling, Fuzzy, ANFIS, Non-Linear Systems.

Presenting Author’s Biography

Ruben Morales-Menendez holds a PhD Degree in Artificial Intelligence
from Tecnológico de Monterrey. From 2000 to 2003, he was a visiting
scholar with the Laboratory of Computational Intelligenceat the Univer-
sity of British Columbia, Canada. For more than 23 years, he has been a
consultant specializing in the analysis and design of automatic control sys-
tems for continuous processes. He is a member of the NationalResearchers
System of Mexico (Level I) and a member of IFAC TC 9.3.



1 Introduction

Magneto-Rheological (MR) fluids are non-colloidal
suspensions of particles with a size on the order of a few
microns [1]. These fluids are unique due to their ability
to change their properties reversibly between fluid and
solid-like states in milliseconds upon the application of
a magnetic field.

Among a broad spectrum of applications,MR fluids
have been widely utilized for vibration damping sys-
tems. In the past decade, there has been an increas-
ing interest of scientists and engineers on theseMR
fluid dampers and their applications [2].MR fluids are
appealing for damping systems since they can operate
at temperatures ranging from 40 to 150◦C with only
slight variations in the yield stress. Additionally,MR
fluids are almost insensitive to impurities and can be
controlled with low voltages (12-24 V) and an electric
current driven power supply outputting 1-2 A [3].

An MR damper can be regarded as a semi-active sus-
pension system. These systems offer the reliability of
passive devices, but maintain the versatility and adapt-
ability of active systems. A semi-activeMR damper
is a non-linear dynamical system, where the inputs can
be the elongation speed and the electric current. The
current is the control input that modulates the damping
characteristic of theMR fluid through the variation of
a magnetic field. The output is the force delivered by
the damper.

AlthoughMR dampers are greatly promising for con-
trol scenarios, their major drawback lies on their non-
linear and hysteretic behavior, Fig. 1. Furthermore, the
design of a controller generally requires to model the
system, which becomes a non-trivial task when it comes
to MR dampers [4].

Fig. 1 MR damper behavior. Force is plotted against
velocity at five electric current inputs.

In [5], an Adaptive Neuro-Fuzzy Inference System
(ANFIS) was explored for fitting simulated data ob-
tained with the Spencer model, [2]. TheANFIS was
proven to fit the simulated data to an acceptable degree.
Similar results can be observed in [6] and [7].

The present study is motivated on the aforementioned
challenge that involves the correct modelling of anMR
damping system. Two fuzzy models are proposed and
analyzed. Experimental data sets were obtained at the
mechanical testing laboratory of Metalsa1. Section 2
presents a literature review. Section 3 discusses the
experimental setup and design of experiments (DoE).
Sections 4 and 5 describe the models proposed and the
results. Section 6 discusses the results. Finally, section
7 concludes the research.

Tab 1 defines the variables that will be used through the
paper.

Tab. 1 Variables.

Variable Description
x(t) Linear displacement, in
v(t) Linear velocity, in/s
i(t) Electric current, A
F(t) MR Damper output force, lbf
F̂ (t) EstimatedMR damper force, lbf
T Total number of discrete samples

2 Literature Review
2.1 MR Damper Modelling

Different modelling techniques have been studied for
MR dampers. In [2], [8], and [4] phenomenolog-
ical modelling techniques have been explored in or-
der to obtainMR damper models. In [9], semi-
phenomenological techniques were used to develop a
mathematical model able to describe the hysteretic be-
havior of theMR damper. The research done in [3]
compared three different model structures for theMR
damper including a black-box one based on Non-linear
ARX (NARX) models. The performance index se-
lected by the author for comparing the results was the
Error to Signal Ratio (ESR). The index value is one
if the model is trivial and zero if the model is perfect.
The definition for theESR is shown in Eq. 1 taken
from [3], whereT indicates the total number of discrete
samples.
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2.2 Fuzzy Modelling

A Takagi-Sugeno-Kang (TSK) fuzzy model can be se-
lected for modelling complex systems. The fuzzy rules
of the model can be determined by adaptively generat-
ing them based on input and output data or by select-
ing them by hand. The inputs of the model are fuzzy
and the outputs are crisp. The total output of the sys-
tem is calculated using the weighted average of the out-
put functions [6]. The system can use a hybrid learn-
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ing algorithm that combines the backpropagation gra-
dient descent and least squares methods. ATSK fuzzy
model trained in this manner is often named Adaptive
Neuro-Fuzzy Inference System (ANFIS).

If a first-orderANFIS consists of three inputs and
one output (each input with three possible membership
functions), and only three fuzzy rules are selected as
shown in Eqs. 2 - 4,

If x(t) is A1 and v(t) is B1 and i(t) is C1

then f1(t) = p1x(t) + q1v(t) + r1i(t) + s1

(2)

If x(t) is A2 and v(t) is B2 and i(t) is C2

then f2(t) = p2x(t) + q2v(t) + r2(t) + s2

(3)

If x(t) is A3 and v(t) is B3 and i(t) is C3

then f3(t) = p3x(t) + q3v(t) + r3i(t) + s3

(4)

wherex(t), v(t), andi(t) are input language variables;
Aj , Bj , andCj are fuzzy sets;f1(t), f2(t) andf3(t) are
output language variables;pj , qj , r1, andsj are the out-
put parameters of the fuzzy system, then Fig. 2 would
represent theANFIS structure for the first-order fuzzy
system. TheWj andWnj represent the degree of fit-
ness and the normalized fitness of the fuzzy rules, re-
spectively.
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Fig. 2 ANFIS structure of a first-order fuzzy model
with three inputs and one output. For simplicity, only
three fuzzy rules, out of the 27 possible combinations,
are considered.

3 Experimental System
A Delphi MagneRideTMMR damper was used to per-
form a total of 29 tests [10] . An MTSTMGT con-
troller testing system was used to control the position of
the damper. A FlextestTMdata acquisition system com-
manded the controller and recorded the position and
force of theMR damper, as well as the electric current
on the coil. A sampling frequency of 512 hertz was

used. The bandwidth of displacement was 0.5 - 14.5
Hz, which lies within normal automotive applications.
The experimental setup is shown in Fig. 3.

Fig. 3 Experimental setup.

Eight of the 29 tests were chosen for this study. In
the experiments, the electric current,i(t), patterns were
Stepped Increments (SC), Increased Clock Period Sig-
nal (ICPS), Pseudo Random Binary Signal (PRBS),
and AmplitudePRBS (APRBS). Road Profile (RP )
signals were used as the displacement,x(t), input pat-
tern. TheRP signals reach a maximum amplitude of
0.5 in and emulate the dynamics of a damper used in
automotive applications. Various replicates of the ex-
periments were performed and used as validation data.
The specific patterns of the eight experiments are shown
in Tab. 2. Fig. 4 shows the patters used for experiments
three and four. For experiments six to eight, stepped
increments of 0, 0.4, 0.8, 1.2, 1.6, 2.1, and 2.5 A, each
with a duration of 30 seconds, were utilized. The seven
replicates for the last three experiments correspond to
the seven constant current stepped increments.
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(a) Exp. 3.
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(b) Exp. 4.

Fig. 4 Displacement and electric current patterns for ex-
periments 3 and 4. Both experiments were done using
anRP displacement pattern andPRBS andAPRBS
electric current signals, respectively.

4 ANFIS Model
An ANFIS structure was proposed for modelling the
MR damper. Displacement, velocity, and electric cur-



Tab. 2 Experiments

Displacement E. Current
Exp. Pattern Pattern Replicates

1 Smooth Highway RP ICPS 11
2 Smooth Highway RP APRBS 11
3 Smooth Highway RP PRBS 11
4 Long Duration RP APRBS 3
5 Long Duration RP ICPS 4
6 RP SC 7
7 RP SC 7
8 RP SC 7

rent were used as inputs, and the damper force was the
output. The model resembles the one in Fig. 2, but
contains 27 fuzzy rules for all possible combinations of
inputs. Three Gaussian membership functions were uti-
lized to fuzzify each input. The outputs of the system
were selected as linear functions.

OneANFIS model was trained using the first repli-
cate of each set of experimental data after being normal-
ized. The training was done until the error decreased by
less than a threshold. Then, the eight trainedANFIS
models were validated using the experimental data. The
ANFIS models were named after the experiment with
which they were trained. Tab. 3 presents the average
ESR obtained by the models when validated with the
experimental data sets.

The box plots on Fig. 5 and 6 show theESR ob-
tained by models 1 and 7. The figures present a box
and whisker plot with one box for each experiment. The
boxes have lines at the lower quartile, median, and up-
per quartile values. The whiskers are lines extending
from each end of the boxes to show the extent of the
rest of the data. Outliers are data with values beyond
the ends of the whiskers.

Tab. 3 AverageESR by ANFIS model and experi-
ment.

Model
Exp 1 2 3 4 5 6 7 8

1 0.07 0.15 0.12 0.22 0.21 0.10 0.10 0.10
2 0.09 0.06 0.11 0.10 0.10 0.08 0.08 0.08
3 0.33 0.36 0.08 0.35 0.19 0.10 0.10 0.10
4 0.07 0.07 0.09 0.07 0.06 0.07 0.07 0.07
5 0.09 0.12 0.10 0.12 0.08 0.08 0.08 0.08
6 0.22 0.90 0.25 0.78 0.45 0.06 0.08 0.09
7 0.53 1.69 0.68 2.04 1.99 0.09 0.07 0.12
8 1.02 8.96 1.07 1.47 0.62 0.11 0.07 0.05

5 Non-Linear Fuzzy Model
A TSK non-linear fuzzy model [11] was proposed for
theMR damper. Using the electric current as input for
the model, fuzzy rules were proposed as specified in Eq
5.

If i(t) is Aj then f(t)j = gj(x(t), v(t)) (5)

Notice that each output functionf(t)j depends on the
displacement and the velocity of theMR damper.Aj
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Fig. 5ESR by experiment forANFIS model 1. The
error of the model greatly increased when validated
with experiments 3 and 6 to 8.
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Fig. 6ESR by experiment forANFIS model 7. The
error of the model remained below 0.1 for all experi-
ments. The outliers on the validation with experiments
6 to 8 correspond to zero input electric current.

are fuzzy sets ofi. The output functions were selected
to be of the form of the semi-phenomenological model
for theMR damper in [9]. The model is shown in Eq.
6,

f(t)j = c1j tanh (c2j (v(t) + c3j x(t)))

+c4j (v(t) + c3j x(t))
(6)

where the coefficientsc1j , c2j , c3j , andc4j are to be
determined from experimental data.

The overall output force of the damper is computed as
specified by Eq. 7,

F (t) =

∑

7

j=1
Wj(i(t)) f(t)j

∑

7

j=1
Wj(i(t))

(7)



whereWj represents the membership degree ofi(t) on
each of the membership functions. As Eq. 6 only de-
pends on the displacement and velocity of the damper,
the coefficients were identified using experiments six
to eight. The fitting algorithm selected was non-linear
least squares and yielded one non-linear equation for
each of the seven electric current stepped increments
on the experiments. In this way, one non-linear fuzzy
model was obtained from experiment 6, one from ex-
periment 7, and one from experiment 8. The fuzzy
models were labeled according to the experiments with
which they were trained. Fig. 7 depicts the proposed
fuzzy structure.
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Fig. 7 Non-linear fuzzy model structure with one input
and one output. Seven possible input membership func-
tions are considered.

The input membership functions for each model were
defined as seven Gaussian functions with a variance
equal to 0.2 and means of 0, 0.4, 0.8, 1.2, 1.6, 2.1, and
2.5 A, respectively. Additionally, seven output func-
tions were selected in the form of Eq. 6 with coeffi-
cients previously identified.

The proposed models were validated using the eight
sets of experimental data. The box plots on Figs. 8 -
10 present the resultingESR by experiment.
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Fig. 8ESR by experiment for fuzzy model 6. The er-
ror of the model remained below 0.12 for most of the
experiments. The variance greatly increased for exper-
iment 7.
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Fig. 9 ESR by experiment for fuzzy model 7. The er-
ror of the model constantly remained below 0.12. The
outliers on the validation with experiments 6 to 8 corre-
spond to zero input electric current.
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Fig. 10ESR by experiment for fuzzy model 8. The er-
ror of the model constantly remained below 0.11. The
outliers on the validation with experiments 6 to 8 corre-
spond to zero input electric current.

6 Discussion

The ANFIS structure obtaninedESR values of
approximately 0.1 when trained using experimental
data with constant electric current stepped increments.
Nonetheless, theESR variance increased considerably
when validated with constant electric current experi-
ments (Fig. 6). The outliers on the plot correspond
to experiments with zero electric current. On the other
hand,ANFIS structures trained using experimental
data with varying electric current could not predict the
output force of the damper when validated with con-
stant electric current inputs.

Surprisingly lowESR values were constantly obtained
by the proposed non-linear fuzzy structure. Excelent
results were seen with fuzzy model 6, except when val-
idated with experiment 7. With fuzzy models 7 and 8



the outliers observed on the resultingESR validation
box plots correspond to experiments with zero electric
current. Additionally, for both proposed structures, the
ESR variance increased when validated with constant
electric current experiments.

Tab. 4 presents the averageESR obtained by both the
ANFIS and non-linear fuzzy structures. Notice that,
if classified by the average error,ANFIS models 6 to
8 and the three fuzzy models are the best options for
modelling theMR damper.

Tab. 4 AverageESR by model.

Model AverageESR

ANFIS 1 0.30
ANFIS 2 1.44
ANFIS 3 0.30
ANFIS 4 0.62
ANFIS 5 0.45
ANFIS 6 0.09
ANFIS 7 0.08
ANFIS 8 0.09

Fuzzy 6 0.10
Fuzzy 7 0.09
Fuzzy 8 0.09

When comparing the complexity of the structures, the
proposed non-linear fuzzy model is crearly less com-
plex than theANFIS one. The first is composed of 27
rules, whereas the latter contains only seven. Nonethe-
less, the advantage of theANFIS structure lies in its
use of simple linear output functions instead of non-
linear ones.

The present study confirmed the work done in [5], [6],
and [7] for model fitting and extended it to experimen-
tal data. As mentioned in [6], it was proved that an
ANFIS structure can succesfully capture the dynam-
ics of anMR damper and can be a useful tool for con-
trol. In addition, the results obtained by the proposed
non-linear fuzzy structure extended the capabilities of
the model in [9] to varying electric current scenarios.

Further work may address the use of different phe-
nomenological models of theMR damper as output
functions for the non-linear fuzzy structure. Addition-
ally, the non-linear fuzzy model may benefit from the
inclusion of more input membership functions.

7 Conclusion

The results obtained showed that fuzzy-based mod-
elling can be a powerful method for describing the be-
havior of highly non-linear systems. As opposed to
phenomenological techniques, fuzzy methods do not
requiere a profound knowledge of the dynamics of the
system. After validating theANFIS structures, exper-
iments with stepped increments of the electric current
allowed for a better training of the models and obtained
averageESR values of less than 0.1. The proposed
non-linear fuzzy structure succesfully combined fuzzy
methods with semi-phenomenological modelling. The

three trained non-linear fuzzy models obtained average
ESR values of less than 0.1.
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