
A RETARGETABLE, HIGH-PERFORMANCE
ISA SIMULATOR IN JAVA

Marco Kaufmann, Thomas B. Preußer, Rainer G. Spallek

Institut für Technische Informatik

Technische Universität Dresden

01062 Dresden, Germany

{marco.kaufmann, thomas.preusser, rainer.spallek}@tu-dresden.de()

Abstract

This paper presents Jahris — a retargetable, high-performance ISA simulator entirely
written in Java. It seamlessly integrates a high simulation speed and instruction-accurate
observability, both of which are conflicting design goals, by a transparently adapting
simulation execution. Jahris implements advanced just-in-time compilation techniques
with a platform-independent hotspot engine targeting Java bytecode. It uses large trans-
lation units formed by branch-free instruction sequences to widely eliminate the sim-
ulation dispatch overhead. Jahris includes its own ISA description language, which
aims at both a high simulation speed and the rapid modelling of target architectures. Its
flexibility has been proven by the modelling and successful testing of a diverse set of
architectures including DLX, i8086, ARMv4 and 32-bit PowerPC. The simulation per-
formance has been determined to achieve up to 78 percent of that of QEMU with an
extremely reduced modelling effort.
This paper makes two major contributions. Firstly, it proves the Java Runtime Environ-
ment (JRE) to be a virtual but feasible simulation platform. This enables the platform-
independent implementation of high-performance JIT-compiling simulation engines,
which take advantage of the widely-available and sophisticated JVM implementations.
As these handle the further translation to the native code of the actual simulation host,
Jahris further benefits from their internal and possibly platform-specific code optimiza-
tion. Secondly, a novel ISA description language is introduced, which provides a strict
separation between the decoder and the instruction behavior of ISA models. This allows
the extraction of the behavior from code sequences to enable sophisticated simulation
techniques such as behavior caching and block compilation.

Keywords: Retargetable, Dynamic compilation, ISA simulation, Hot Spot, Java

Presenting Author’s Biography

Marco Kaufmann is a researcher at the Institute of Computer Engeneering
at the Faculty of Computer Science of the Technische Universität Dresden.
He received his Diplom in Computer Science from the Technische Univer-
sität Dresden in 2009 and is now working towards his Ph.D. His research
interests include the modelling and simulation of computer systems and
compiler and language design.

1 Introduction

Simulators have become an essential tool in the design
process of instruction set architectures (ISAs). Serving
as debuggers and profiling tools, they enable the con-
tinuous evaluation of design choices in the context of
the targeted application domain prior to the actual im-
plementation of the ISA. They further provide a virtual
implementation of the architecture that not only allows
an early start of the software development but also pro-
vides a valuable debugging environment.

ISA simulators are expected to meet several, often con-
flicting, demands. Most prominently, they should offer
a high simulation speed while also providing the fine-
grained observability of the target architecture. As to
reflect the programmer’s view on the target architec-
ture correctly, the accurate observability is generally re-
quired for the instruction level whereas a cycle-accurate
pipeline model is typically of no concern. However,
already the computation of the consistent architectural
states at all instruction boundaries for observability
clearly impacts the simulation performance as it pre-
vents the optimization of the execution of the instruc-
tion behavior across these boundaries.

Traditionally secondary demands for simulators are
their portability, or even platform independence, and
their retargetability. As these goals enable the preser-
vation and reuse of achieved design and simulation
know-how across host and target architectures, their
importance grows with increasing numbers of special-
purpose architectures with short-lived revisions. Unfor-
tunately, the implementation of these demands typically
also requires a compromise with respect to the simula-
tion performance.

This paper presents Jahris, an ISA simulator offer-
ing a valuable tradeoff between the simulator design
goals by demoting their mutual conflicts. A key and
unique feature in the implementation of Jahris is the
use of the Java platform as virtual simulation host.
This platform offers a target for sophisticated dynamic
compilation techniques, which enable the fast execu-
tion of the binary target applications. Nonetheless,
Jahris itself remains platform-independent while even
benefitting from platform-specific optimizations imple-
mented in the dynamic code generators of the host
JVMs. While the use of large translation units fur-
ther increases the simulation performance, their fully
transparent implementation allows an instant retreat to
instruction-accurate observability. Finally, retargetabil-
ity is achieved by an ISA description language, which
enables sophisticated simulation techniques by a clean
separation of concerns between instruction decoding
and execution, and yet allows the rapid modelling of
target architectures for the simulator.

After section 2 has given an overview on the related
work and state-of-the-art simulation techniques, sec-
tion 3 will describe Jahris’ simulation engine. In sec-
tion 4, the basic principles of Jahris’ ISA description
language, HPADL, are explained. Benchmark results
and a comparison with QEMU are, finally, given in sec-
tion 5 before section 6 concludes this paper.

2 Related Work

The simplest approach to ISA simulation is its imple-
mentation as an interpreter. Such simulators fetch and
decode every target instruction each time it is to be ex-
ecuted and apply their behavior to update the state of
the simulated architecture. Besides its simplicity, this
approach is very flexible providing natural support for
self-modifying or dynamically-reloaded code and even
allowing computationally adapted instruction sets [1].
Its simulation of the target architecture is also faithful
and allows the inspection of a consistent architectural
state at any time. Unfortunately, these benefits come at
the cost of a low simulation performance not acceptable
for the simulation of larger target applications.

On the other extreme, there is the statically-compiled
simulation as described by Mills et al. [2]. It essen-
tially moves the continuous decoding overhead of the
interpretive execution to a one-time compilation effort.
The compiler fetches and decodes the instructions of
the target application, performs a static code analysis
and compiles the application into native code of the
host machine ahead of time. This leads to a significant
speedup of the simulation. However, this comes at the
expense of observability and flexibility. A consistent ar-
chitectural state can only be provided at pre-determined
checkpoints. Self-modifying or dynamically-generated
code is not supported. The long startup time caused
by the compilation step can only be amortized by long
simulation runs. The runtime profile of the target appli-
cation cannot be considered so that even code blocks,
which are actually never invoked during the simulation,
are compiled.

A compromise between both of these extremes is estab-
lished by the dynamically-compiling ISA simulation,
which aims at combining both performance and flexi-
bility. This approach does not compile the target ap-
plication ahead of time. Instead, the code blocks of
the target application are fetched and decoded during
the simulation just in time before their initial execu-
tion. The compiled results are cached for possible later
reuse. This compilation on demand enables a short
startup time while still eliminating more and more of
the decoding overhead as the simulation proceeds. The
compilation is limited to the code blocks actually en-
countered in the execution of the simulated application.
Code modified or added dynamically is easily handled
by this approach and merely requires a careful manage-
ment of cached compilations. Moreover, execution pro-
filing can be employed to intensify the optimization of
the compilation of application hot spots.

An implementation of a dynamically-compiling ISA
simulator with a pipeline-accurate modelling of the tar-
get architecture and a cycle-accurate ISA simulation is
described by G. Braun et al. [3]. It is based on a LISA
specification [4] of the target architecture’s micro op-
erations. A hybrid approach combining static and dy-
namic compilation has been proposed by Reshadi et al.
[5]. They practice an as-far-as-possible static compila-
tion of the target application ahead of time. Only code
blocks not discovered during the static analysis or mod-
ified during the simulation are compiled dynamically.

Jones and Topham suggest the use of large translation
units for the dynamic compilation of target applications
into native host code [6]. This improves the simulation
performance in two aspects. First of all, the dispatch
of the individual code blocks is further reduced so that
a larger share of the simulation time can be designated
to the behavior execution. Secondly, larger translation
units provide the dynamic compiler with a greater scope
for optimization. Their ISA simulator EHS supports a
fast Dynamic-Binary-Translation simulation mode us-
ing large translation units as well as a slow interpreter
mode for instruction-accurate simulation.

Dynamically-compiling simulation techniques are also
employed by the full-system-emulator QEMU [7].
It uses micro operations, which are compiled into
the platform-independent representation as TCG1 ops
ahead of time. The dynamic compilation then assem-
bles these micro operations according to the instruc-
tions contained in a code block to feed a TCG back-
end for native host code generation [8]. A simulation
cache is utilized for translation units similar to basic
blocks. A further increase of performance is achieved
by Direct-Block-Chaining, a technique that tries to by-
pass the cache to jump to translated blocks directly.
QEMU achieves very high simulation speeds. How-
ever, its field of application is emulation rather than
simulation. Thus, observability or instruction-accurate
modelling are of no concern. The retargation of QEMU
requires the manual modelling of an architecture in C
using the provided framework. There is no designated
ISA description language.

3 The Simulation Engine

3.1 Simulation Architecture

Simulation

Cache

Execute /

Compile

Decoder

Check-

point

Miss (IFA)

update (µOP Seq.)

HIT (TF /

µOP Seq.)

µOP Seq.

IFA

Machine

Context

Memory

Subsystem

IFA

update

(TF)

Fig. 1 - Simulation control flow

The core control flow of the simulation loop is depicted
in Fig. 1. A single pass always starts at a checkpoint
representing a consistent state of the simulated architec-
ture. This state is transformed into a new one by the ex-
ecution of an execution unit. The appropriate execution
unit is identified by the current instruction fetch address
(IFA) and may be a micro-operation sequence (µOP se-
quence) to be interpreted or a compiled translated func-
tion (TF). It is first looked up in the simulation cache.

1 Tiny Code Generator [8]

 fibonacci:

E7F0 xor ax,ax

E7F2 mov bx,1

E7F5 mov cx,10

 body:

E7F8 add ax,bx

E7FA xchg ax,bx

E7FB loop body

E7FD ...

Address Instruction

E1

E2

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

...

Tag DataIndex

E7F0

 -

 -

 -

 -

 -

 -

 -

E7F8

 -

...

E1

null

null

null

null

null

null

null

E2

null

...

Target Application Simulation Cache

For the purpose of clearness, the target application is displayed in as-

sembler mnemonics, though actually fetched and decoded in binary.

Also, the default cache size is 1M rather than 256 entries as suggested

by the cache index in the figure.

Fig. 2 - Overlapping execution units (E1 and E2)

Only if it cannot be located there, the decoder will be
involved to construct a micro-operation sequence from
the binary application image in the memory of the target
architecture. The decoded µOP sequence is buffered
in the simulation cache. It will itself trigger its re-
placement by an equivalent translated function when
its execution counts exceeds a configurable compilation
threshold, which currently defaults to 10 runs. The fi-
nal output of each execution unit is the next IFA, which
interpreted µOP sequences derive explicitly from the
architectural state whereas translated function include
an optimized compiled computation.

Jahris uses a simulation cache to store execution units
that have already been fetched and decoded. The used
direct-mapped cache is of configurable size. It is in-
dexed by the lower part of the IFA, which in whole is
used as the tag associated with a stored execution unit.
The current cache implementations allows an IFA of up
to 64 bits.

The decoder is responsible for the initial fetching and
decoding of the application code into functionally-
equivalent µOP sequences. These are composed di-
rectly from the original instruction stream of an execu-
tion unit. The input to the decoder is the initial IFA of
the execution unit and the memory bus, from which to
fetch the instruction words. Note that the decoder may
not further process the current architectural state so as
to produce a true cachable behavioral model of the ex-
ecution unit that is applicable to this and all its future
invocation without regard to the particular architectural
state.

3.2 Execution Units

The smallest execution unit possible for a non-cycle-
accurate ISA simulator is a single target instruction.
As suggested previously (Sec. 2), larger execution units
lead to a higher simulation performance. Similar to
QEMU, Jahris uses block execution units, which reach
from an entry point (label) up to and including the next
control-transferring target instruction. It may span an
arbitrary number of instructions. Because such a block
may include further entry points, they are not identical
to what is known as basic blocks. Execution units may,

in fact, even overlap with one being the suffix of the
other with a distinct entry point. An illustrating exam-
ple for such a situation is shown in Fig. 2.

Overlapping execution units in the simulation cache im-
ply that their overlapping parts have been fetched and
decoded multiple times. While this certainly incurs
an additional decoding overhead, it also maximizes the
size of the code sequences that can be executed without
an intermediate dispatch. A thorough enforcement of
mutually exclusive execution units would also require
either a static control flow analysis to identify all pos-
sible entry points or the discarding of already compiled
units when a previously unknown entry point is discov-
ered during the simulation. These approaches do, how-
ever, not promise any benefit that would justify their
costs.

3.3 Hot-Spot Simulation Compiler

Decoded execution units in the simulation cache are
stored either in their interpretive form as a micro-
operation sequence (µOP sequence), or in their com-
piled form as a Translated Function (TF). The cached
µOP sequences keep track of their invocation count. If
this invocation count exceeds the configurable compila-
tion threshold, the particular µOP sequence is compiled
into an equivalent TF. This step assumes that execution
units that were invoked frequently in the past, i.e. the
execution hot spots, will also be invoked frequently in
the future so that the time spent for the compilation will
actually amortize by the accelerated future runs of the
execution unit. The configurable compilation threshold
defaults to 10 executions. The special threshold values
of 0 and -1 request an instant compilation and a perma-
nent interpretation, respectively.

The translation of execution units into native code of
the host typically involves two compilation steps, only
the first of which is implemented by Jahris itself. In
fact, Jahris assembles appropriate Java bytecode into a
specialized class representation of a TF and holds it pre-
pared in a custom class loader. From there, the class is
loaded into the host Java Virtual Machine (JVM) and
instantiated for the simulation cache entry to be used in
the future. In modern JVM implementations, the execu-
tion of the TF will again be profiled as to trigger another
hot-spot compilation step eventually. Thereafter, the TF
will even be executed as native code implementation on
the host machine.

The two-stage compilation approach implemented for
Jahris may appear somewhat expensive. Indeed, it in-
volves the generation of Java bytecode as intermediate
representation which is embedded into a flattened class-
file structure, which then needs to be parsed and veri-
fied by the host JVM. Nonetheless, the use of the JVM
as quasi-host for Jahris also bears many benefits. First
of all, the Java platform offers a compilation target that
itself is platform-independent. It is this feature that al-
lows Jahris to implement a hot-spot simulation com-
piler that is available an all host machines providing a
JVM. Classic dynamic compilers, on the other hand,
would have to rely on a platform-dependent compiler

backend. Furthermore, Jahris benefits from the highly-
sophisticated compilers integrated in modern JVM im-
plementations. All their compilation know-how even
including platform-dependent code optimizations can
be exploited by Jahris. Its own bytecode compiler can,
thus, avoid any larger own effort in optimization. Note
that even most Java compilers are non-optimizing leav-
ing this effort to the JVM, which can even make im-
proved optimization decisions based on the actual host
machine architecture and on application profiling infor-
mation.

3.4 Breakpoints, Stepping and Asynchronous Halt

At the end of each simulation cycle, the checkpoint of
the simulation loop is passed (cf. Fig. 1) and the simu-
lation break flag is checked. If it is set, the simulation is
stopped. Thus, the break flag enables the asynchronous
simulation halt with a precision to the execution unit.
As execution units do never contain branches and, thus,
no loops, their execution must terminate and the halt of
the simulation can be guaranteed. Also, the limited pre-
cision of the halt to the boundaries of execution units is
not a deficiency due to the asynchronous nature of the
halt, which makes no assumption about the simulation
time within execution units.

Despite the use of large execution units possibly com-
prising a long sequence of target instructions, Jahris
also facilitates the synchronous, instruction-precise
simulation halt via instruction stepping and break-
points. The implementation of both these features is
non-invasive and does neither rely on any particular
support by the simulated target architecture nor on a
modification of the application binary. Whenever the
simulation halts, the target architecture is, of course, in
a consistent state, which can be inspected and modified
by the user.

Breakpoints are managed by the simulator and may be
set at any location of the target application, even inside
execution units. When a breakpoint is set, all execution
units that contain its code location are removed from
the simulation cache. Hence, the invocation of the af-
fected code must necessarily cause a cache miss and
the decoder will be requested to assemble a new exe-
cution unit. Whenever it encounters a breakpoint dur-
ing this process, it will discontinue the assembly at this
point. The resulting incomplete execution unit will be
executed and, as desired, end right at the breakpoint. To
avoid spoiling the cache with fragments, the so obtained
execution units are not cached. Note that the simulation
and its performance up to the code section containing a
breakpoint is not affected at all. Thus, breakpoints do
not downgrade simulation performance. Jahris will also
restore expelled execution units to the simulation cache
as soon as the last breakpoint in their covered code sec-
tion is cleared.

Instruction stepping makes the simulation proceed by
a precisely-defined number of instructions unless a
breakpoint is encountered before. Its implementation
relies on a counter, which maintains the count of in-
structions yet to go. Before each invocation of an exe-

cution unit, it is verified that it contains fewer instruc-
tions than the current counter value. If so, the counter
is decremented accordingly and the execution unit is in-
voked. Otherwise, the decoder is queried for an auxil-
iary incomplete execution unit comprising exactly the
remaining number of instructions. As with the incom-
plete execution units produced for breakpoints, these
are not cached. Note again that all but the last execu-
tion unit are executed normally on a whole. Merely, the
management of the counter adds a marginal overhead
as compared to the regular simulation.

4 The Architecture Description

The retargetability of Jahris is achieved by its own
ISA description language High Performance Architec-
ture Description Language (HPADL). It is used to de-
scribe target architectures entirely and aims at both the
rapid ISA modelling and the compatibility with ad-
vanced simulation techniques such as simulation caches
and large translation units. Its key feature is the strict
separation of concerns between the instruction decod-
ing and the instruction behavior.

An ISA description in HPADL is subdivided into three
sections: the structural section, the decoder descrip-
tion and the behavioral description. This section cov-
ers the basic principles of each of them. Amongst oth-
ers, a complete language specification including exam-
ple code and hints for the creation of efficient architec-
ture descriptions is given by Marco Kaufmann in [9].

4.1 Structural Section

The structural section models the memory subsystem
and the machine context of the target architecture.
The memory subsystem consists of an arbitrary set of
busses, each of which has its own autonomous address
space. A bus specification contains the name by which
the bus is identified in the scope of the architecture de-
scription, the specification of its access interfaces and
a device map. The latter instantiates representatives for
bus devices and maps them into the address space. Ac-
cess interfaces are specified by their endianess, the size
of an addressable unit in bits, and the allowed access
widths in addressable units. Uncommon values such
as an addressable unit of 7 bits or accesses of 3 ad-
dressable units are supported. For bus accesses in the
behavioral description, the requested access interface is
selected by its identifier.

The predefined classes of bus devices comprise RAM
and ROM components. Additional user-defined classes
can be included into an architecture description using
the include clause. User-defined bus device classes
must be provided as Java classes. They may realize
aribitrary device functions, and even provide an in-
terface to the host plattform. For example, they can
be used to implement IO devices such as timers, key-
boards, UARTs or VGA interfaces. Thus, Jahris is also
applicable as a full-system simulator. An example for
a memory subsystem including user-defined bus device
classes is provided by listing 1.

1 import io.Timer;

2

3 bus mem {

4 unit = 8;

5 endian = BIG;

6 access {

7 byte = 1;

8 word = 2;

9 dword = 4;

10 }

11 devices {

12 export ram mem {

13 base = 0;

14 size = 0x40000000;

15 }

16 export io.Timer timer {

17 base = 0x40000000;

18 size = 8;

19 }

20 }

21 }

Listing 1 - Example memory subsystem description

1 context {

2 // standard registers

3 export int pc; // program counter

4 export int iar; // interrupt address

5 export int[32] r; // general purpose

6

7 // floating-point registers

8 export boolean fpsr; // status

9 export int[32] f; // scratch

10 }

Listing 2 - Example machine context declaration (DLX)

The machine context is the set of variables that - aside
from the memory subsystem - define the state of the tar-
get architecture. This, at least, comprises variables to
represent the register set and may further include aux-
iliary variables of the machine context that are required
in the scope of the behavioral description. An example
for a machine context declaration is given in listing 2.

4.2 Decoder Description

As to enable the caching and re-use of decoded and pos-
sibly dynamically-compiled execution units, the fetch
and decode process must necessarily be indipendend
from the instruction execution process and thus in-
dipendend also from the current machine context. In
HPADL, this is achieved by a strict separation of con-
cerns between instruction decoding and instruction be-
havior whereas other description languages typically
mingle them.

The decoder description includes the term for the in-
struction fetch address (IFA), the decoder context spec-
ification and decoder operations. The IFA has an ex-
ceptional position, as it resides in the decoder section
though it is actually not a part of the instruction de-
coder and even depends on the current machine con-
text. The IFA expression is evaluated by the simulation
engine in order to determine the address of the next ex-
ecution unit. Only in the case of a cache miss, this is

actually passed back to the decoder as the initial fetch
address. Note that the IFA computation may be more
complex than evaluating a single PC register. So, the
term 16 * CS + PC is used for the i8086 architec-
ture.

The decoder context contains all variables that must be
globally visible to the decoder operations as well as
those variables that are to be exported to the instruction
execution context. The behavior of the instruction de-
coder is specified in terms of decoder operations. They
fetch and decode an instruction word or parts of it and
generate the appropriate µOP sequence. Arbitrary com-
plex decoder algorithms can be specified. Incremental
fetching and processing of instruction words is possi-
ble. Decoder operations may also invoke each other so
that a modular decoder design is enabled. This makes
decoder descriptions very compact and flexible so as to
allow simple instruction decoders as well as decoders
for complex variable-length instruction word formats.

Execution units are terminated by control transfer in-
structions, because they might break the sequential con-
trol flow of the target application (cf. Sec. 3.2). Such
instructions may not be obvious to the instruction de-
coder as the change of the control flow may be an
occasional side effect of rather innocuous instructions
such as an arithmetic instruction having R15, the pro-
gram counter, as destination on some ARM architec-
tures. Therefore, HPADL requires that control trans-
fer instructions be marked explicitly. For this purpose,
the predefined µOP exit is provided, which has no
behavioral meaning but merely tags control transfer in-
structions. Whenever this µOP is contained in the sub-
sequence to be appended for another target instruction,
the decoding processes completes after this instruction.
Note that the exact position of this µOP within the sub-
sequence is irrelevant.

Listing 3 provides a decoder example in HPADL using
an excerpt from the DLX decoder description.

4.3 Behavioral Description

The behavioral section defines the instruction execution
context and the µOPs available to the instruction de-
coder. The µOPs may freely implement any behavior.
All memory busses of the target architecture are acces-
sible, and both the machine and the instruction execu-
tion context are visible within the behavioral descrip-
tion. As an example, listing 4 shows an excerpt from
the DLX behavioral description.

The instruction execution context contains variables
that are globally visible to all micro operations. Unlike
variables of the machine context, the lifespan of these
variables is bound to one particular execution of one in-
struction. There is no memory of their value after this
execution of the instruction completes. As these vari-
ables are implemented more efficiently than those in the
machine context, all variables that need not keep their
state across individual instruction executions should be
put into the instruction execution context. A typical ap-
plication for such variables is the transfer of intermedi-
ate results between µOPs.

1 decoder {

2 // instruction fetch address

3 fetch {

4 bus = mem;

5 pc;

6 }

7 // decoder context

8 context {

9 int iw, s1, s2, d;

10 }

11 // main decoder operation

12 default = dlx;

13 // j-format instruction operand

14 operation j {

15 s2 = (iw << 6) >> 6;

16 }

17 ...

18 // fetch and decode instruction

19 operation dlx {

20 iw = fetch.word;

21 IPC;

22 decode iw[26 to 31] {

23 0x00: alurr;

24 0x01: fpurr;

25 0x02: {j; J; exit;}

26 0x03: {j; JAL; exit;}

27 0x04: {i; BEQZ; exit;}

28 0x05: {i; BNEZ; exit;}

29 0x06: {i; BFPT; exit;}

30 0x07: {i; BFPF; exit;}

31 0x08: {i; ADDI;}

32 ...

33 }

34 }

35 }

Listing 3 - Example decoder description (DLX)

The instruction execution context may further import
variables from the decoder context. These are read-
only and keep a constant value for the whole execu-
tion of the target instruction. Such variables are even
more efficient in simulation as the simulation compiler
replaces them by constants. These read-only variables
are suitable for all values the decoder can already com-
pute such as immediates extracted from the instruction
word.

5 Benchmark and Comparison with

QEMU

The target application employed for the benchmark was
a sieve test for the ARMv4 architecture. Within one it-
eration, it computes a prime number sieve in the mem-
ory of the target arcitecture covering the numbers 3 to
16381. For comparison, this application was executed
on both Jahris and QEMU. The performance of both
simulators can be expected to increase with longer sim-
ulation runs as the impact of the dynamic compilation
costs decreases. For the verification of this hypothe-
sis, performance measurements were obtained for dif-
ferent numbers of sieve iterations ranging from 1 000
to 10 000 executions within one benchmark. The em-
ployed performance metric is the average number of
target instructions executed per second throughout the

1 behavior {

2 // instruction execution context

3 context {

4 decoder s1,s2,d;

5 float fs1,fs2,fd;

6 double ds1,ds2,dd;

7 }

8 // micro operations

9 operation IPC {pc += 4;}

10 operation J {pc += s2;}

11 operation JAL {r[31] = pc; pc += s2;}

12 operation BEQZ {if (r[s1] == 0) pc += s2;}

13 operation BNEZ {if (r[s1] != 0) pc += s2;}

14 operation ADD {r[d] = r[s1] + r[s2];}

15 operation ADDI {r[d] = r[s1] + s2;}

16 operation LW {

17 r[d] = mem.word[r[s1]+s2];

18 }

19 operation LBU {

20 r[d] = mem.byte[r[s1]+s2];

21 }

22 operation LHU {

23 r[d] = mem.half[r[s1]+s2];

24 }

25 ...

26 }

Listing 4 - Example behavioral description (DLX)

Tab. 1 - Host configuration

CPU 2×Dual-Core AMD Opteron(TM) @2.4GHz

Cache L1: 2×128 kb, L2: 2× 1 MB

Main Memory 4GB

OS Ubuntu 9.04, Kernel 2.6.28-16-generic

JRE
Java(TM) SE Runtime Environment

(build 1.6.0_16-b01)

JVM
Java HotSpot(TM) 64-Bit Server VM

(build 14.2-b01, mixed mode)

QEMU Version 0.10.0

QEMU Target ARM Versatile/PB (ARM926EJ-S)

QEMU Guest OS Linux 2.6.18 for Versatile

(Debian 2.6.18.dfsg.1-23+versatile)

run of the benchmark specified in Million Instructions
Per Second (MIPS). The same ARMv4 target applica-
tion binary in ELF format was used for the Jahris as
well as for the QEMU benchmark test both executed on
the same host machine. The configuration of this host
is summarized in Tab. 1.

The obtained results are summarized in Tab. 2 and
Fig. 3. As expected for both simulators, the simula-
tion performance increases with the length of the run.
The performance of Jahris consistently amounts to 63
to 66 percent of that of QEMU regardless of the bench-
mark size. Note that the performance of Jahris can be
increased significantly by running the JVM with more
aggressive non-default options:

• -Xverify:none deactivates the bytecode veri-
fier, thus, reducing the costs of class loading also
for the simulation compiler.

• -XX:+AgressiveOpts enables aggressive
code optimization, which raises the execution
speed at the cost of additional compilation ef-

Tab. 2 - Jahris and QEMU simulation performance

Sieve-Benchmark Simulation Performance

Run length QEMU Jahris

Iter. Instructions MIPS MIPS %1)

1 000 494832396 174.24 114.70 65.83
2 000 989664396 181.59 119.57 65.85
5 000 2474160396 200.45 126.01 62.86

1 0000 4948320396 206.18
129.26 62.69

161.382) 78.272)

1) compared to QEMU

2) with JVM switches (see text)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

10000 5000 2000 1000

S
im

u
la

ti
o
n
 P

e
rf

o
rm

a
n
c
e
 i
n
 M

IP
S

Iterations

QEMU

Jahris with JVM switches
Jahris

Fig. 3 - Jahris and QEMU simulation performance.

fort for the bytecode to native code translation.
This option is particularly valuable for longer
simulation runs.

As shown for the benchmark of 10 000 sieve iterations,
Jahris even achieves 78 percent of the QEMU perfor-
mance with these switches.

While QEMU is, indeed, somewhat more performant
than Jahris, its designated field of application is also
quite different. Rather being a system emulator than
simulator, observability or even instruction-accurate
modelling are of no concern to it. Furthermore, the
retargation of QEMU requires the manual modelling
of the target architecture in C merely using the pro-
vided framework. Jahris, on the other hand, utilizes a
compact designated ISA description language for the
rapid modelling of target architectures. The greatest
additional benefit of Jahris is its unmatched platform-
independence achieved by the use of the Java virtual
machine. This even allows Jahris to profit from any
improvements in the JVM execution engines without
requiring its own development effort as for a highly-
sophisticated native compilation backend. Given these
advantages, the achieved performance of up to 78 per-
cent of that of QEMU is considerable.

6 Conclusion

In this paper, a retargetable, high-performance ISA sim-
ulator was presented that seamlessly integrates high
simulation speeds and instruction-accurate observabil-
ity. It is entirely implemented in Java and its hot-spot
simulation compiler itself targets Java bytecode. This
makes Jahris highly portable and even allows it to take
advantage of the JVM’s dynamic, highly-sophisticated
code optimization. Jahris applies advanced simulation
techniques such as the hot-spot compilation of the tar-
get application into Java bytecode and large translation
units. It has been showed that high simulation speeds
are achieved, which compare well with QEMU. The
Java Virtual Machine has been proven to be a suitable
platform for ISA simulation.

Jahris can be retargeted by HPADL, a new ISA de-
scription language that integrates rapid ISA modelling,
flexibility and high simulation performance. This is
achieved by a strict separation of concerns between the
decoder and the instruction behavior within ISA mod-
els. Its flexibility has been proven by the modelling and
successful testing of a diverse set of architectures in-
cluding DLX, i8086, ARMv4 and 32-bit PowerPC.

Continuing work will focus on improved support for
dynamically generated code and the further increase of
the simulation performance.

7 References

[1] Thomas B. Preußer, Steffen Köhler, and Rainer G.
Spallek. Modelling and simulating dynamic and
reconfigurable architectures for embedded comput-
ing. In Yskandar Haman and Gamal Attiya, ed-
itors, Proceedings of the 5th EUROSIM Congress
on Modeling and Simulation, 2004.

[2] C. Mills, S. C. Ahalt, and J. Fowler. Compiled in-
struction set simulation. Software, Practice and Ex-
perience, 21(8):877–889, 1991.

[3] Achim Nohl, Gunnar Braun, Oliver Schliebusch,
Rainer Leupers, Heinrich Meyr, and Andreas Hoff-
mann. A universal technique for fast and flexible
instruction-set architecture simulation. InDAC ’02:
Proceedings of the 39th annual Design Automation
Conference, pages 22–27, New York, NY, USA,
2002. ACM.

[4] Vojin Zivojnovic, Stefan Pees, and Heinrich Meyr.
Lisa machine description language and generic ma-
chine model for hw/sw co-design. In W. Burleson,
K. Konstantinides, and T. Meng, editors, VLSI Sig-
nal Processing, IX, 1996., October 1996.

[5] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt.
Instruction set compiled simulation: a technique
for fast and flexible instruction set simulation. In
DAC ’03: Proceedings of the 40th annual De-
sign Automation Conference, pages 758–763, New
York, NY, USA, 2003. ACM.

[6] Daniel Jones and Nigel Topham. High speed cpu
simulation using ltu dynamic binary translation. In
HiPEAC ’09: Proceedings of the 4th International
Conference on High Performance Embedded Ar-

chitectures and Compilers, pages 50–64, Berlin,
Heidelberg, 2009. Springer-Verlag.

[7] Fabrice Bellard. Qemu, a fast and portable dy-
namic translator. In ATEC ’05: Proceedings of
the annual conference on USENIX Annual Techni-
cal Conference, pages 41–41, Berkeley, CA, USA,
2005. USENIX Association.

[8] Fabrice Bellard. Tiny code generator.
http://svn.savannah.gnu.org/svn/

qemu/trunk/tcg/README, 2009.

[9] Marco Kaufmann. Erschließung von Just-in-
Time-Compilierungstechniken in der Realisierung
eines retargierbaren Architektursimulators, De-
cember 2009.

