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Abstract  

Simulation-based analysis of fitness landscapes with application to the vehicle 
scheduling problem with time windows is discussed in the paper. Methods of 
analysis of fitness landscapes and measures known in literature are reviewed. 
The procedure for simulation based analysis of fitness landscape is introduced. 
The tool that allows automating this analysis is described. The simulation model 
is developed within AnyLogic 6 simulation software, while Java applications 
generate landscape path solutions, analyse their fitness values series and 
implement a genetic algorithms. Experimental study for a vehicle scheduling 
problem with the time windows is given and demonstrates the main steps of 
fitness landscape applied to optimization problem. 
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1 Introduction 
Vehicle scheduling problems (VSP) represent a class 
of freight transportation problems aimed at assigning a 
set of scheduled trips to a set of vehicles, in such a 
way, that each trip is associated with one vehicle, and 
a cost function for all trips is minimised [1, 2]. This 
problem is often modified with additional constraints 
like time windows or capacity constraints. A number 
of methods to solve VSP problems are proposed in 
literature, e.g. integer programming, combinatorial 
methods, heuristics. However, they can be applied 
only for particular problems and cannot be usable in 
many real-life applications. Also, commercial 
scheduling software usually based on heuristic 
optimisation (Logware, Shortec, etc.) cannot satisfy 
all problem constraints as well as employ new 
information that become available after a schedule is 
generated. Nowadays, evolutionary algorithms are 
often used to solve complex optimisation problems. 
However, in some cases they may be not enough 
computationally efficient. The hardness of an 
optimisation problem and the ability of the 
evolutionary algorithm to perform an efficient search 
of the optimal solution can be determined by using 
fitness landscape analysis [4-7]. The problem is hard 
to solve with an evolutionary algorithm if its fitness 
landscape has a large number of structures, which 
disturb a search of the global solution. The main 
landscape feature which influences the problem 
difficulty for an optimisation algorithm is the 
landscape ruggedness [8]. To measure the degree of 
ruggedness of the problem search space, several 
statistical and information measures are introduced. 

In practice, VSP can be also complicated by stochastic 
processes existing in the system, e.g., when a vehicle 
moving speed is a random variable. In this case, 
evaluation of fitness for potential solutions can be 
done through simulation, and simulation-based 
optimisation could be used to solve the problem. As 
simulation technology provides a flexible tool to 
determine the optimality of each solution, simulation-
based fitness landscape analysis becomes an important 
task. 

The paper presents simulation-based fitness landscape 
analysis for the scheduling problem with time 
windows. The paper is organised as follows. Section 2 
defines the problem statement. Section 3 gives basic 
information about fitness landscape analysis, and the 
main statistical and information measures of fitness 
landscape are defined. Section 4 describes building up 
of the toll for landscape analysis. Section 5 presents 
results of the experimental study. The last section 
presents the summary of performed research. 

2 Problem statement 
A vehicle schedule defines a schedule of goods 
deliveries by vehicles from a distribution centre (DC) 

to a net of shops or supermarkets in twenty-four hours 
[3]. Vehicles or trucks belong to different groups that 
have various parameters such as capacity, limited 
velocity and ownership, i.e. own or rented. 
Distribution routes for vehicles are fixed. For each 
route, the following parameters are defined: a 
sequence of shops (route points), an average time 
interval for vehicle moving between route points, 
loading and unloading average time and type of goods 
to be carried on this route. Furthermore, goods could 
be only delivered to shops in predefined time 
windows. For each shop, an average demand per 
product type is defined. Vehicle capacities are limited 
and known. 

The problem is aimed to assign trucks to routes in 
order to minimise the total idle time for all trucks. 
Decision variables that assign trucks to trips and 
define a start time for each trip are introduced in the 
problem, i.e. trip x_truck i, trip x_time, where x is a 
trip number, and i is a truck number. The objective 
function f is defined as follows:  
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where i
idleT is the total idle time for truck i, and N is a 

number of trucks. The truck idle time is defined as a 
sum of time periods, when a truck is waiting for the 
next trip in the parking place. The problem operational 
constraints are:  

1) Truck capacity constraints, which define that a 
truck cannot ship more freight than its capacity; 

2) Delivery time constraints, i.e. goods could be 
delivered to shops only within defined time windows; 

3) Gate capacity constraints, i.e. a number of 
trucks that can be loaded in a warehouse 
simultaneously cannot exceed number of gates. 

Express analysis shows that the problem could have 
many solutions not feasible within restrictions. This 
could make a search process computationally non-
efficient. To avoid this, the objective function f is 
modified taking into account an amount of constraints 
not satisfied by a potential solution: 

 ,540321
*

otolmcidle NkNkTkTkTkTf +++++=∑  (2) 

where f* is a modified objective function; TC defines 
the total duration of overlapping trips for one vehicle; 
Tm is the total time of window mismatches; To and Nol 
defines the total time and a number of vehicles that 
over perform working hours; and Not is a number of 
vehicles that are overloaded. Here, all indexes for 
unsatisfied constraints are multiplied by coefficients ki 
> 1, i = 1,…,5 that increase a value of the objective 
function and make fitness of these solutions worse. 



3 Fitness landscape analysis 
The main objective of a fitness landscape analysis is 
to evaluate the difficulty of an optimisation problem 
and investigate the ability of the evolutionary 
algorithms to solve the problem. The fitness landscape 
consists of three main components: the set of 
genotypes, the fitness function that evaluates the 
genotypes and genetics operators that define 
neighbourhood relations between the genotype sets. A 
landscape can be interpreted by a surface in a search 
space that defines the fitness for each potential 
solution. In this case, searching an optimal solution is 
interpreted as walking on the fitness landscape surface 
towards the highest hill, with overcoming other hills 
and valleys [4]. 

The structure of the fitness landscape influences the 
performance of an evolutionary algorithm. There are 
several characteristics associated with the landscape 
optima that define the structure of fitness landscapes 
[5]. These are the landscape modality, epistasis, 
ruggedness, and deceptiveness. The modality 
evaluates a number of optima in a search space and an 
optima density. The epistasis refers to genotype fitness 
dependence on multiple genes interaction. Both high 
modality and epistasis lead to a more rugged fitness 
landscape. Such rugged search spaces are harder to 
search compared to a smoother landscape with low 
epistasis and modality [6, 7].  

A number of different techniques have been 
developed for fitness landscapes analysis by 
evaluating their structural characteristics. These 
techniques can be divided in two distinct groups:  
statistical analysis and information analysis.  

In statistical analysis techniques, several correlation 
metrics for characterising the landscape structure are 
proposed. The autocorrelation function is used to 
measure the landscape ruggedness. In case of a low 
autocorrelation between two sets of landscape points 
separated by some distance, these points have 
dissimilar fitness values, and the landscape is more 
rugged. Another correlation metric used in practice is 
the correlation length. It defines a distance beyond 
which two sets of fitness points becomes uncorrelated 
[9]. The magnitude of this length indicates the 
smoothness of the landscape. A shorter correlation 
length would indicate less smoother and more rugged 
landscape.   

Information analysis is aimed to obtain more 
information about the structure of fitness landscapes, 
comparing to statistical analysis techniques. In 
particular, it allows estimating the diversity of the 
local optima, modality of landscape and the degree of 
regularity of random walks [6]. Information analysis is 
performed based on the sequence of fitness values 
obtained by a random walk on the landscape. The 
concept of entropy proposed in classical information 
theory is used as a basic concept to quantify the 
ruggedness of a landscape. Four information measures 

are proposed in literature [6]. The information content 
and partial information content are two measures of 
the entropy or amount of fitness change encountered 
during the walk in the obtained landscape path. The 
first one indicates the ruggedness of the landscape, 
and the second one defines the modality of the 
landscape path. The information stability characterizes 
the magnitude of the landscape path’s optima. The 
density-basin information analyses the variety of flat 
and smooth sections on the landscape. Both statistical 
and information analysis techniques can be used only 
for a statistically isotropic fitness landscapes [6]. 

4 Build up of analysis tool 
Simulation is a core technology in which the tool for 
fitness landscape analysis is build up. Here, fitness 
evaluation of the solutions in the landscape path is 
made through simulation. The procedure for the 
simulation-based fitness landscape analysis [3] 
comprises of the following steps (Fig. 1):   

1) Fitness landscape path generation; 

2) Fitness evaluation of solutions in the path 
through simulation; and 

3) Analysis of path fitness sequence. 

 
Fig. 1 Fitness landscape analysis stages 

To evaluate fitness of solutions in the path, the 
simulation model in AnyLogic 6 is used. This 
simulation software is based on the object-oriented 
conception, implemented in Eclipse framework and 
employs Java language for the definition of complex 
structures and algorithms [10]. In the tool, Java 
applications generate landscape path solutions and 
analyse their fitness series. As far as AnyLogic 
software don’t have API for external applications, all 
data is transferred in the form of tables into MS Excel 
spreadsheets. 

At first stage, a random walk on the problem fitness 
landscape is performed. As a result, genotypes of 
landscape path solutions are obtained. 

At the second stage, the simulation model with 
different parameters, i.e. solutions with different 
genotypes, is run. Simulation experiments of the type 
‘Parameters Variation’ are performed. As a result, the 
model generates a spreadsheet which contains a 
sequence of fitness values. 

Finally, both statistical and information analysis of the 
fitness landscape is performed at the same time. The 
following statistical measures based on the generated 
path fitness data are calculated: autocorrelation r(k) 
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for sets of points separated with k solutions, and the  
correlation length τ. The autocorrelation function r(k) 
is approximated [7] by 
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where E(ft) and V(ft) represent the expectation and the 
variance of the sequence of N fitness values {ft}N

t=1. 
The correlation length τ is evaluated [7] by  
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The tool also provides determination of the following 
information measures: information stability ε*, 
information content H(ε), partial information content 
M(ε) and density-basin information h(ε) for different 
values of ε. The information content H(ε) is defined  
[6] by 
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where the probabilities P[pq] represents frequencies of 
possible sub-blocks pq of length two from the string 
S(ε) with elements { }1,0,1∈is  enumerated by 
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for any fixed ε. The string S(ε) contains information 
about the structure of the landscape, and the parameter 
ε defines the accuracy of calculation of this string.     

Partial information content is determined [6, 7] by 
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where n is the length of the string S(ε),  and the 
function Φ is calculated recursively by  

( ) ( )
( )
( )

ji

i

i

S

S

S
S ssand

s
s
and

otherwise
jif
jif

niif

kji
kii
kii

k

kji
≠

≠
≠

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>
=
>

+Φ
++Φ
++Φ

=Φ
0

0
,

,0,
0,

,

,,1
1,,1
1,,1

,,
(8) 

The information stability ε* is equal to the smallest ε 
value, when obtained that the fitness path has no 
structures at all [6]. To define ε*, an interval of 
possible ε values is divided by 2 at each iteration. A 
half-interval that contains possible value ε* is selected 
for further analysis in the next iteration.  

Finally, the density-basin information is determined 
[7] by 
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where the probabilities P[pp] represents frequencies of   
sub-blocks pp from the string S(ε). 

Measures H(ε), M(ε) and h(ε) are calculated iteratively 
in the interval [0, ε*) with a step 0.05.  

5 Experimental study   
5.1 Simulation modelling 

The vehicle scheduling model is built as a discrete-
event simulation model [11], in which each vehicle is 
modelled as an active object. The object behaviour is 
described by a state chart (Fig. 2) that defines vehicle 
possible states (e.g., parking, loading, moving and 
unloading) and transition between them. Three classes 
are defined for shop, trip and job objects. These 
objects are used for storage of input data of the model. 
As the amount of input data is large, they are defined 
in Microsoft Excel spreadsheets and transferred into 
the model with the help of ODBC (Open DataBase 
Connectivity). Within model initialisation, it is 
connected to input data database, and variable 
collections are set up with data from database. 

Parameters of the vehicle schedule (i.e., a trip number 
and the corresponding truck number) are introduced as 
control variables in the model and interpreted as 
decision variables in simulation optimization 
experiments. The assignment of trucks to trips is 
transformed to the assignment of jobs into a job list 
for each vehicle, where a job is defined as a pair of a 
scheduled trip and start time of this trip. The main 
performance measure that indicates an efficiency of 
the vehicle schedule solutions is defined by an average 
total idle time for all vehicles. In the model screenshot 
(Fig. 3), the Gantt chart for the vehicle schedule 
simulated is shown. During simulation, constraint 
violations such as time window mismatch in delivery 
(i.e. wrong delivery time), shortage of truck and gate 
capacity, are fixed.  

To see how sensitive the model performance 
indicators (the total idle time and the total cost of 
vehicle utilisation) are to input data uncertainty, the 
following analysis is performed. 

 The time interval for vehicle moving between route 
points is defined by a random variable from its mean 
value with a normal distribution N(μ, σ2), where μ = 
tmove, σ2 = k * tmove , where tmove is an average value, σ2  

is variance, and the coefficient k which is a ratio of 
variance to mean characterises the randomness 
amplitude or data uncertainty. A number of simulation 
replications n is calculated by a formula [12]: 

 



 
Fig. 2 State Chart 

 

 
Fig. 3 Gantt chart 
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where e defines an absolute error with significance 
level α= 0,05; Zα/2 = t∞, α/2 and t∞, α/2 is Student’s 
coefficient; and s is a sample standard deviation 
received from experiments. Calculations are made in 
assumption, that the performance indicator has a 
normal distribution.  

Results of a sensitivity analysis show that the average 
total idle time of vehicles is dependent on the 
amplitude of randomness (Fig. 4) while the average 
total cost of their utilisation is not sensitive to its 
changes (Fig. 5). Moreover, a growth of uncertainty of 
moving time between customers leads to the growth of 
the total idle time. Consequently, this performance 
indicator is introduced to define the objective function 
f in (1) and its modification f* in (2). 



 
Fig. 4 Dependence of the total idle time on the 

amplitude of randomness (k) 

 
Fig. 5 Dependence of the total cost on the amplitude 

of randomness (k) 

5.2 Landscape analysis 

Various series of experiments for fitness landscape 
analysis with stochastic and deterministic input data 
were performed. In each series, 5 experiments with 
landscape 100 solutions’ long path were made. In the 
first series of experiments, the results of fitness 
landscape analysis for the problem with stochastic 
input data (stochastic times for moving, unloading, 
etc.) and deterministic data expressed by average 
values are compared. Statistical measures are given in 
Table 1, and informational measures in Table 2. 

Tab. 1 Statistical measures 

Input data r(1) r(10) τ (0.1) 

Stochastic 0.84 0.21 7.24 

Deterministic 0.89 0.32 8.75 

Tab. 2 Information measures 

Input data H(0.1) M(0.1) h(0.1) ε* 

Stochastic 0.66 0.20 0.49 0.40 

Deterministic 0.60 0.17 0.37 0.35 

 

Statistical measures indicate that the landscape is 
relatively rugged and even more rugged for the 
problem with stochastic data. The autocorrelation 
between two sets of landscape points separated by 10 
solutions is very low. The correlation length is only 
about 8 solutions. Additionally, the information 
content H(0.1) is relatively high (more than 0.5). This 
leads to the same conclusions about the ruggedness of 

the problem landscape. Then the partial data content 
M(0.1) is low, and as a result, the modality of fitness 
landscape is low. Also modality is lower for the 
problem with deterministic input data. Density-basin 
information h(0.1) indicates that peaks have high 
density and their density is higher for a stochastic 
problem. Information stability value is bigger for a 
stochastic problem, which means that peaks are higher 
for stochastic problem. 

In the second series of experiments, dependence of 
informational measures from calculation accuracy ε is 
analyzed (see, Fig. 6 and Fig. 7). Both information 
measures decrease when ε is increased.  

 

 
Fig. 6 Information content from accuracy ε 

 
Fig. 7 Partial Information content from accuracy ε 

The results of fitness landscape analysis lead to the 
conclusion that the optimisation problem may be 
relatively hard for an evolutionary algorithm. 

5.3 Simulation optimisation 

A genetic algorithm (GA) is applied for search of the 
best combination of vehicle schedule parameters. It is 
implemented as Java class and interacts with the 
simulation model through Parameter Variation 
experiment in AnyLogic. The simulation model is a 
large dimension model with the number of trips, 
trucks and shops equal to 37, 17, and 36, 
correspondingly. The total number of potential 
solutions is equal to 12437 1069,1)13417( ⋅=⋅=N . To 
simplify the optimisation problem, a schedule for 7 
trips is optimised and other trips are fixed. The 
correspondent number of decision variables is 14, 
which leads to the number of potential solutions equal 
to 237 1018,3)13417( ⋅=⋅=N . Function (2) is used for 
fitness evaluation of the solutions. Loading, moving 
and unloading times are defined by their average 
values. 



 
Fig. 8 Convergence of genetic algorithm 

Chromosomes are implemented as strings of integer 
numbers that encode parameters of vehicle schedule, 
i.e. a vehicle number and start time for each trip.  Each 
population contains 200 chromosomes. All genetic 
operators are customized for operating with the 
proposed structure of chromosome. In particular, one 
point crossover operator for data encoded in real 
numbers is applied. In the mutation, new random 
numbers for a vehicle and start time are assigned to 
one randomly selected trip. Crossover and mutation 
rates are defined as 70% and 1%, correspondingly, 
and termination condition is defined by 150 
generations. Figure 8 illustrates the performance of 
GA that converges subject to fitness values to a sub-
optimal solution. The solution found allowed 
decreasing the total idle time comparing with the 
original schedule. 

6 Conclusions 
Analysis of the fitness landscape allows evaluating 
hardness of the optimization problem for evolutionary 
algorithms. For complex problems fitness landscape 
analysis require application of simulation. The results 
of simulation-based fitness landscape analysis show 
that evolutionary algorithms could provide an efficient 
tool for solving vehicle scheduling problem with time 
windows. Future research will be devoted to design of 
simulation experiments for analysing fitness 
landscapes and modify a genetic algorithm to allow 
optimising the problem with a larger number of 
decision variables. 
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