
ALGORITHMIC EVALUATION OF TRUST IN
MULTILEVEL MODEL

Jan Samek1, Frantisek Zboril jr.1

1Brno University of Technology, Faculty of Information Technology,
61266 Brno, Bozetechova 2, Czech Republic

samejan@fit.vutbr.cz (Jan Samek)

Abstract

Artificial agents are autonomous entities that should behave rationally by their
own control. They should have also some social abilities that enable them to
make strategic decision inside a multi-agent community. One of such decision
is to select proper partner which it believes that its behaviour will be reliable
and trustworthy. We address area of trust which may be important for improving
agent’s reasoning capabilities and by this also rationality of its behaviour within
an agent or multi-agent system. This paper introduces specification of the model
which is used for representation of trusts and their hierarchy in agent’s beliefs. In
fact this is a part of agents’s belief base and it is used when decision about some
system element trustworthy takes part in agent’s reasoning process. For these
purposes, we develop Hierarchical Model of Trust in Context which is represented
by multilevel graph, where each node of the graph represents different aspects
(contexts) of trustee and each edge of the graph represents correlation between
different aspects. This is useful to modelling trust in respect to context-aware
environment.

Keywords: trust evaluation, multilevel graph, agent reasoning, context trust

Presenting Author’s Biography
Jan Samek received an MSc degree in Electrical Engineering and Com-
puter Science in Brno University of Technology. In this same school, he
is a postgradual student on Faculty of Information Technology in Brno,
Czech Republic. His main interest in computer science is artificial intelli-
gence area, especially multiagent systems and trust and reputation princi-
ples modelling for virtual agent communities.



1 Introduction
Agent and multi-agent systems are used in many com-
puter applications and create large-scale open dis-
tributed networks. Agents as autonomous entities are
nowadays used also in small integrated devices such as
sensor nodes in wireless sensor network (WSN). Wire-
less sensor network topology is usually highly dynamic
and distributed with many heterogeneous nodes [2].

Our research aims to the improvement of multi-agents
effectiveness. These systems are also suitable for mak-
ing modelling tools for open distributed systems like
WSN [1]. In our recent research [4, 5] we study trust
social phenomena in connection with the multi-agent
systems. We address area of trust which may be impor-
tant for improving agent’s reasoning capabilities and by
this also rationality of its behaviour within an agent or
multi-agent system. We construct agent’s belief base
from different aspects of their possible counterparts,
these aspect are connected into multi-level graph and
connections between different aspects represent their
relationship.

This situation can be illustrated with an example where
agent relies on another agent responsibility to perform
some data sensing on the one hand and also on prop-
agation of reputation of other elements on the other
hand. Malicious nodes may pretend a good sensing
element of the system, but they may send false infor-
mation about other nodes’ reputation trying to compro-
mise them. These two aspects are quite independent
but there can be some aspects that have some depen-
dencies. For example node’s abilities to establish radio
connection with other nodes are basic assumption for
good and trusted coordinator and also it is necessary
for a responsible network router. Then there are three
aspects for which one may establish a trust attitude. We
then suppose that there is a context in which particular
trust aspects are observed [3, 4].

Context is a set of lower-level trusts that consists the
considered trust. Our research of possible models
which would be sufficient for the above mentioned situ-
ations has brought as to development of a model based
on multilevel weighted graph. Hierarchy structure is
made as a multilayer graph where individual nodes rep-
resent particular belief about trusts in some contexts
and the edges between two nodes represents depen-
dences between two context aware trusts at two adja-
cent levels.

We have developed two models concerning trust in hier-
archy [6], one of them straight with some exact values
for every particular trust aspect, the second one intro-
duces some intervals that represent uncertainty about
the aspects’ value. The second case is also the case
which is matter of this text.

The rest of the paper is organized as follows. Section
2 describes HMTC model structure, section 3 describes
computation on this model and provide trust evaluation
algorithm. Experiments with the model by using trust
evaluation algorithm is provided in section 4. Conclu-
sion and future work will be presented in section 5.

2 Structure of HMTC
Hierarchical Model of Trust in Contexts (HMTC) [6]
contains nodes that represent overall trusts to the ele-
ment at the highest as well as the nodes at the lower
levels, that are not so context aware and they represent
more specific trust aspects. Atomic aspects, which are
represented by the lowest nodes of the graph, stands
for functionality of hardware modules or something that
does not depend on other aspects where the trust is eval-
uated. Edges between two nodes represent impact of
the lower-level node trust to the higher-level node trust.

2.1 HMTC definition

HMTC is a multilevel graph defined as usual as a set of
nodes and a set of edges. Nodes represent trust contexts
and edges represent correlation between the contexts.
The multilevel property means that the set of nodes can
be split into several disjunct subsets, where each subset
corresponds to one level of the graph. From other point
of view, each node has exactly defined its level. Leaf
node set is defined as a set of nodes which are at lower
level of graph. Every edge in the model graph connects
pair of nodes at two adjoining levels.

2.2 Trust function

In HMTC we define extended trust function, which
maps every node and a time moment from a time set
to power set of trust interval [6]:

ρ : N × T → 2<0,1> (2.1)

Set of nodes is denoted by N , time moments set is
denoted by T and possible trust interval < 0, 1 >
is from <. In fact, mapping of the trust function
to power set of the possible trust interval means,
that trust has some minimum and maximum trust-
worthiness from the possible trust interval. Toward
this, it is better to define trust with their minimum
and maximum parts ρmin : N × T →< 0, 1 > and
ρmax : N × T →< 0, 1 >. With using this parts, final
trust function for the node A in time t can be denoted
as:

ρ(A, t) =< ρmin(A, t), ρmax(A, t) > (2.2)

where condition ρmin(A, t) ≤ ρmax(A, t) must be
valid. Initial trust value for node A, when we have
no idea about its trustworthy is ρmin(A, t) = 0 and
ρmax(A, t) = 1.

2.3 Weight function

Weight function is used to express strength of relation
between different nodes. Weight function maps each
edge to the weight interval, which is interval < 0, 1 >
from the set of the real numbers <.

w : E →< 0, 1 > (2.3)

Set of edges in the model is denoted by E. For every
non-leaf nodes, there is a restriction that weights sum
of node’s incoming edges (direction from lower level
to higher level) is always equal to 1. In this paper we
suppose that when the model is made, each node has
predefined weight function and can’t change in time.



3 Trust evaluation
Behaviour of the model is driven by events, which can
be either primary or causal. Each node can be updated
by an event. Primary events are abstract in our model,
it means that we do not deal with causes of the event,
setting of size of event impact etc., but we suppose that
there may occur something that change the trust inter-
val for at least one node in the model. Result of such
event is that the targeted node’s trust interval is updated
as the intersection of the event interval with the origi-
nal node’s interval. But primary event may also cause
modification of other nodes trust interval. At first, all
the parent nodes from the actually impacted node are
the possible candidates for trust updating. And con-
sequently all the nodes that lie on the paths from the
target node to some of the highest level nodes are also
the candidates. But consequently also children of the
target node may be changed and then children’s parents
are such candidates etc. In fact when one node changes
it may cause several events for the adjacent nodes. In
this section, we formally discuss how a set of possibly
updated nodes is determined. Then we deal with prin-
ciples of parent/children nodes updating.

3.1 Up-direction computation

Up-direction computation is used in a case, when par-
ent node trust is computed based on knowledge about
all the children nodes trusts. This computation is il-
lustrated in Figure 1. A1 node trust is given as a sum

Fig. 1 Up-direction computation example

of multiplications of all its children nodes (B1 . . . Bn)
trusts and their corresponding weights by the following
formulas [6]:

ρmin(A1, tj+1) =

max(ρmin(A1, tj),
n∑

i=1

wiρ
min(Bi, tj))

(3.1)

ρmax(A1, tj+1) =

min(ρmax(A1, tj),
n∑

i=1

wiρ
max(Bi, tj))

(3.2)

ρ(A1, tj+1) =< ρmin(A1, tj+1), ρmax(A1, tj+1) >
(3.3)

By equations 3.1 and 3.2 for ρmin and ρmax may take
the value outside the previous trust interval, therefore
the final trust function ρ must be composed from ρmin

and ρmax with using max and min functions. This will
ensure normalization of ρ to the extended trust interval.

3.2 Down-direction computation

Down-direction computation is used in case, when
child node trust is computed based on knowledge
about parent(s) and neighbour(s) node(s) trust. Down-
direction computation of B1’s trust is illustrated in Fig-
ure 2. Trust of node B1 is computed trough parent node

Fig. 2 Down-direction computation example

A1 and all A1 children (B2 . . . Bn) [6]. The following
formulas demonstrate down-direction computation for
node B1:

ρmin(B1, tj+1) = max(ρmin(B1, tj),

ρmin(A1, tj)−
n∑

i=2

wiρ
max(Bi, tj)

w1
)

(3.4)

ρmax(B1, tj+1) = min(ρmax(B1, tj),

ρmax(A1, tj)−
n∑

i=2

wiρ
min(Bi, tj)

w1
)

(3.5)

ρ(B1, tj+1) =< ρmin(B1, tj+1), ρmax(B1, tj+1) >
(3.6)

In case when an impacted node has more than one par-
ent, partial result trough all parent nodes are computed
and aggregated with using intersection. This situation is
illustrated on figure 3. B2 is computed with using two

Fig. 3 Down-direction computation with two parent
nodes

parts: ρP1(B2, tj+1) and ρP2(B2, tj+1). These parts
are computed in respect to equations 3.4, 3.5 and 3.6
and combined into ρ(B2, tj+1) with using intersection:

ρ(B2, tj+1) = ρP1(B2, tj+1) ∩ ρP2(B2, tj+1) (3.7)



3.3 Trust evaluation algorithm

As we mentioned above, HMTC is driven by events
where each node can be updated. In following text
we recognize two types of updates: direct update and
subsidiary update. Direct update is update which is
done from environment and directly update trust inter-
val of any node of HMTC. This update triggers pro-
cess called trust evaluation algorithm which may con-
sequently cause subsidiary updates. In next chapters we
will use the term update for subsidiary update and di-
rect update will be mentioned explicitly. This section
specifies how a trust evaluation algorithm works.

Algorithm will be demonstrated on an example, when
a node A in a time moment i directly updated into a
trust interval ρ(A, ti) =< ρmin(A, ti), ρmax(A, ti) >.
Algorithm starts with adding every parent and child
nodes of A into the Open queue. To use a queue en-
sures that the parent nodes are re-computed first in the
next iteration and the children nodes are re-computed
later. This operations order increases effectiveness of
the trust update algorithm because it minimize num-
ber of iterations which goes to the final state. This
optimization will be described in section 4. The algo-
rithm works in iterations while the Open queue is not
empty. For each poped node new trust interval is re-
computed with using function computeTrust. This
function accepts one argument node. If a node is a root
node (node ∈ N1), then only up-direction computation
will progress. If this node is leaf-node (node ∈ Nn),
only down-direction computation will progress. In all
other cases, both up/down-direction computations will
be done. Function computeTrust respects previous
trust of the node and new trust interval (for time j + 1)
equals to intersection of previous (time j−1) and com-
puted (time j) trust values.

ρ(A, tj+1) = ρ(A, tj) ∩ ρ(A, tj−1) (3.8)

If new node trust differs from its previous trust
ρ(A, tj+1) 6= ρ(A, tj−1), then node trust is updated
(subsidiary update) and all of node’s parents and chil-
dren nodes are added into the Open queue (except
nodes, which are already in the Open queue or except
the node A itself).

Naturally one node may be re-computed and/or updated
more than once during the algorithm run. This happens
when it is added again to the Open queue after a previ-
ous re-computation of the some adjacent node. In next
chapter, we describe how this situation may occur.

4 Experimental results

In this section, we describe case study for usage of our
model. On this case study we provide example of trust
update algorithm and we describe different strategies of
node selection for the trust update algorithm. We also
present experimental results that show how number of
computations and number of updated nodes depends on
position of particular nodes in the multilevel graph.

input: updatedNode = A, time = i,
ρ(A, ti) =< ρmin(A, ti), ρ

max(A, ti) >
begin1

Open← ∅2
pushAll (Open, getParents (A))3
pushAll (Open, getChilds (A))4
while Open 6= ∅ do5

node← pop (Open)6
ρ(node, ti+1)← computeTrust (node)7
if ρ(node, ti+1) 6= ρ(node, ti) then8

Parents← ∅ ∪ getParents (node)9
while Parents 6= ∅ do10

p← pop (Parents)11
if p 6= A and p /∈ Open then12

push (Open, p)13

Childs← ∅ ∪ getChilds (node)14
while Childs 6= ∅ do15

ch← pop (Childs)16
if ch 6= A and ch /∈ Open then17

push (Open, ch)18

i← i + 119

end20
Algorithm 1: Trust evaluation algorithm

4.1 Case study scenario

At the beginning, we describe our case study scenario.
We provide two different examples of trust update al-
gorithm in one HMTC. The model is created from sit-
uation where the peers in P2P network are rated in dif-
ferent contexts (client, server, link speed, etc.).

In the first case, we update trust in leaf node (figure 4)
Upload. This update starts from an initial state, where
each node trust interval is initialized into < 0.0, 1.0 >.
Direct update of the Upload node (into interval <
0.3, 0.5 >) causes only up-direction re-computation
(because Upload has no children nodes). This re-
computation updates three graph nodes: Server, Link
speed and Peer. This situation is illustrated in Figure
4.

Fig. 4 Case study 1 – up-direction update

In the second case, our example starts from situa-
tion which follows the fist example after the evalua-



tion is done. Direct update of node Client (into in-
terval < 0.4, 0.6 >) causes both up/down-direction
re-computations. As a consequence of this re-
computation, three other nodes are updated: Peer, Link
speed and Download (this is illustrated on figure 5).
Download node is re-computed and updated when par-
ent node cause down-direction via parent nodes Link
speed and Client. Link speed node is updated in both
directions and for the Peer node only up-direction is
used via nodes Server, Link speed and Client.

Fig. 5 Case study 1 – up/down-direction update

The Peer node is updated twice in this example. Firstly
when the Peer node was added into the Open queue
as first node (because its direct parent of updated node
Client) and was updated from interval < 0.138, 0.77 >
into interval < 0.258, 0.65 >. Secondly the Peer node
is updated when a Link speed node was updated from
interval < 0.18, 0.7 > to interval < 0.28, 0.6 >. Be-
cause its parent node is the Peer node and then will
be added into the Open queue again. Finally, the Peer
node trust is updated into interval < 0.288, 0.62 > due
the interval reduction of Link speed node.

4.2 Node selection strategies

We are investigating two different strategies in trust
evaluation algorithm concerning how the nodes are in-
serted into the Open queue respectively selected from
Open queue. Selection strategies may have impact
to number of iterations until HMTC update process
finishes. This does not mean that strategy selec-
tion reduce/increase number of iterations, but only re-
duce/increase number of iteration when all relevant
nodes are updated.

First selection strategy is called as first-the-child (FtCh)
strategy. This strategy ensures that children nodes of
actually updated node will be inserted into the Open
queue before the parent nodes and it means that they
will be process before the parent nodes in future. This
strategy can be presented on trust evaluation algorithm
(Algorithm 1 - described in section 3) when lines 3 and
4 are swapped and block of code from line 9 to line 13
is moved after line 18.

Second selection strategy is called as first-the-parents
(FtP). This strategy works as we illustrated in section
3.3, Algorithm 1. Parent nodes of directly updated node
are re-recomputed first because they are inserted into

the Open queue before the children nodes.

Tab. 1 Experimental results with different selection
strategies

Case 1 Case 2
Strategy FtCh FtP FtCh FtP
Iterations 8 8 10 10
Iterations to
achive final state

4 3 8 6

Updated nodes 3 3 4 4
Computed nodes 5 5 6 6

Experiments with these two strategies are shown in
table 1. For these experiments was used case study
from previous subsection 4.1. Iterations is number of
re-computed and/or updated nodes during one evalua-
tion run, updated nodes are nodes which are subsidiary
updated and computed nodes are nodes which are re-
computed but not updated.

As we can see that strategy first-the-parents (FtP)
reduce number of iterations which are required for
achieving the final state of one evaluation run. Both
strategies have the same number of iterations which are
needed for re-computation. Future work will be aimed
to optimization of the trust update algorithm with using
first-the-parents strategy. This should reduce number
of iterations which are needed for re-computation of all
relevant nodes.

4.3 Effect of the node level to trust updates

Our last experiment aims to investigate impact of the
direct updates in different levels of the model relating
to number of produced node updates. We again use
HMTC from the case study scenario in subsection 4.1
where all the nodes are in their initial state at the begin-
ning. The model contains three levels (n = 3), these
nodes were split into three disjunctive subsets by their
level:

1. root node: L = 1, N1 = {Peer};

2. non-leaf and non-root nodes: 1 < L < n, N2 =
{Server, Link speed, Client};

3. leaf-nodes: L = n, N3 = {File quality, Upload,
Download, Secured protocol}.

At the beginning each node is initialized to the default
trust interval < 0, 1 >. For these three sets we simu-
late node trust direct updating event (for each node from
each set) and we update their trust from 0.0 to 1.0 (re-
spectively from < 0.0, 0.0 > to < 1.0, 1.0 > with re-
spect to the interval representation). We do this with a
step 0.05 and we observe how many nodes are conse-
quently updated. For each nodes set and each simula-
tion step we compute average value of nodes that had
been updated.

Experimental results are presented as a graph in Fig-
ure 6. It shows some interesting aspects [6] of HMTC
which follows from presented case study:



Fig. 6 Experimental results of updating nodes in differ-
ent levels

1. Direct trust update in a leaf node always causes
the same number of updated nodes irrespective to
range of the update.

2. Updating of non-root and non-leaf node trust into
values near extreme values (0 and 1) causes the
greatest number of updated. The number of up-
dates also depends on edge weights configuration.

3. In corresponding to point 2. above, we state that
updating of the root node trust into values which
are near to extreme values (0 and 1) causes updates
of all the other nodes in the model irrespective to
edge weights configuration.

4.4 Conclusion about experimental results

On the bases of the experiments presented in subsec-
tions 4.2 and 4.3 we observed that when leaf node is di-
rectly updated then only parent nodes (and all the parent
nodes on the path to a highest-level node) are updated.
Nodes in the same level of the model are not updated.
This means that the FtP strategy is more effective than
the FtCh strategy when direct updates of a node which
is not in the highest level of the model are made. Both
the strategies FtP and FtCh have the same effective-
ness for a highest level node updates. Then we can con-
clude that effectiveness of the FtP strategy grows with
the level of the node for which direct update is done.

5 Conclusion and future work
In this paper we presented the trust update algorithm for
hierarchical model of trust in contexts (HMTC), which
is made as a multilevel graph. The algorithm is used to
infer trust from one aspect of entity for aspect another.
This is useful for multiple context trust scenarios where
different entities in the system should be seen as trusted
in respect of an interaction context.

We also presented experiments on different scenarios
which shows some interesting aspects of presented trust
update algorithm. Future work will concentrate to us-
age of these experimental for improvement of trust up-
date algorithm efficiency. This should consequently im-
prove efficiency of our trust model.

Acknowledgement

This work was partially supported by the grants GACR
102/09/H042, BUT FIT-10-S-1 and the research plan
MSM0021630528.

6 References
[1] Félix Gómez Mármol and Gregorio

Martı́nez Pérez. Providing trust in wireless
sensor networks using a bio-inspired technic. In
Networking and Electronic Commerce Research
Conference (NAEC 08), 2008.

[2] Yingshu Li, My T. Thai, and Weili Wu. Wireless
Sensor Networks and Applications (Signals and
Communication Technology). Springer-Verlag New
York, Inc., 2007.

[3] L. Mui. Computational Models of Trust and Rep-
utation: Agents, Evolutionary Games, and Social
Networks. PhD thesis, Massachusetts Institute of
Technology, 2003.

[4] Jan Samek and Frantisek Zboril. Multiple context
model for trust and reputation evaluating in multi-
agent systems. In Proceedings of CSE 2008, pages
336–343. Faculty of Electrical Engineering and In-
formatics, University of Technology Kosice, 2008.

[5] Jan Samek and Frantisek Zboril. Agent reason-
ing based on trust and reputation. In Proceedings
MATHMOD 09 Vienna - Full Papers CD Volume,
pages 538–544. ARGE Simulation News, 2009.

[6] Jan Samek and Frantisek Zboril. Hierarchical
model of trust in contexts. In F. Zavoral et al.,
editor, NDT 2010, Part II, volume 88 of CCIS,
pages 356–365, Berlin Heidelberg, 2010. Springer-
Verlag.


